REGIONAL TRANSIT ISSUE PAPER

REGIONAL TRA	NSITISSUE	PAPER		Page 1 of 2
Agenda Item No.	Board Meeting Date	Open/Closed Session	Information/Action Item	Issue Date
9	07/23/12	Open	Action	07/09/12

Subject: Approving a Resolution Adopting an Initial Study/Negative Declaration for Installation of a Stand-By Emergency Power Generator Project at 1225 R Street and Approving the Project

ISSUE

Whether or not to Approve a Resolution Adopting an Initial Study/Negative Declaration for installation of a Stand-By Emergency Power Generator Project at 1225 R Street and approve the project.

RECOMMENDED ACTION

Adopt Resolution No. 12-07-____, Adopting and Approving an Initial Study/Negative Declaration for the Installation and Operation of a Stand-By Emergency Power Generator At 1225 R Street and Approving the Project.

FISCAL IMPACT

None as a result of this action.

DISCUSSION

In order to provide emergency power to the RT administrative facility at 1225 R Street in case of a power outage, RT proposed to install and operate (as necessary) a stand-by emergency power generator. The emergency generator would be an EPA-certified stationary 175-kW system that would use ultra low-sulfur diesel fuel. The generator would include a 300 gallon above-ground The generator, AST, and ancillary features would be storage tank (AST) for diesel fuel. contained within a weatherproof and sound-attenuated enclosure.

In order to comply with the California Environmental Quality Act (CEQA), an Initial Study was performed to ascertain whether the proposed project may have a significant effect on the environment. On the basis of this study, it was determined that the proposed Stand-By Power Generator will not have any significant effects on the environment and that a Negative Declaration is appropriate.

As the lead agency under CEQA, RT must determine whether the Initial Study/Negative Declaration satisfies the requirements under CEQA. If the Board adopts the Initial Study/Negative Declaration and makes the required findings, the Board may approve the project. RT must file a Notice of Determination within five working days of such approval.

Staff recommends that the Board adopt the attached resolution: 1) adopting an Initial Study/Negative Declaration for a Stand-By Emergency Power Generator at 1225 R Street (Exhibit

REGIONAL TRANSIT ISSUE PAPER

Page 2 of 2

				0
Agenda Item No.	Board Meeting Date	Open/Closed Session	Information/Action Item	lssue Date
9	07/23/12	Open	Action	07/09/12

Subject:	Approving a Resolution Adopting an Initial Study/ Negative Declaration for
	Installation of a Stand-By Emergency Power Generator Project at 1225 R Street
	and Approving the Project

A); 2) making the findings required under CEQA; and 3) approving the project and directing the filing of a Notice of Determination.

RESOLUTION NO. 12-07-____

Adopted by the Board of Directors of the Sacramento Regional Transit District on this date:

July 23, 2012_

ADOPTING AND APPROVING AN INITIAL STUDY/NEGATIVE DECLARATION FOR THE INSTALLATION AND OPERATION OF A STAND-BY EMERGENCY POWER GENERATOR AT 1225 R STREET AND APPROVING THE PROJECT

WHEREAS, the Sacramento Regional Transit District (RT) operates an administrative facility at 1225 R Street which is critical to the daily operation of RT services; and

WHEREAS, the 1225 R Street facility does not have a reliable emergency power source in the event of a power outage; and

WHEREAS, RT has identified a need to provide an emergency back-up source of power for continued operations at this location during a power outage; and

WHEREAS, an Initial Study was prepared by and for RT to ascertain whether the installation of an stand-by emergency power generator at 1225 R Street would have a significant effect on the environment; and

WHEREAS, RT consulted with and requested comments on the Initial Study from Responsible Agencies, Trustee Agencies, and other federal, state and local agencies in compliance with CEQA Guidelines; and

WHEREAS, RT provided a Notice of Intent to adopt a Negative Declaration on June 26, 2012; and

WHEREAS, the County Clerk posted the proposed Negative Declaration for at least 20 days.

THEREFORE, BE IT FURTHER RESOLVED, that this Board does hereby adopt the following findings, which this Board finds are supported by substantial evidence in light of the whole record:

- A. THAT, an Initial Study has been prepared pursuant to CEQA;
- B. THAT, the Initial Study did not identify any potentially significant effects on the environment from the proposed Project;
- C. THAT, the Board certifies the Initial Study/Negative Declaration (Exhibit A) has been completed and circulated in compliance with CEQA and is consistent with state and RT guidelines implementing CEQA;
- D. THAT, the Board has reviewed and considered the subject Initial Study, the proposed Negative Declaration, all comments received during the public review

period, as well as written and oral comments and other evidence presented by all persons, including members of the public and staff members, who appeared and addressed the board;

- E. THAT, the Board has before it all of the necessary environmental information required by CEQA to properly analyze and evaluate any and all of the potential environmental effects of the proposed modifications to the Project;
- F. THAT, the Board has reviewed and considered the Initial Study and Negative Declaration which reflects the Board's independent judgment;
- G. THAT, the Board finds that there is no substantial evidence in the record that the Project will have a significant effort on the environment.
- H. THAT, based on the evidence presented and the records and files herein, the Board determines that the proposed Project will not have a significant effect on the environment.

RESOLVED FURTHER THAT, the Board approves and adopts a Negative Declaration for the installation of a Stand-by Emergency Power Generator at 1225 R Street.

RESOLVED FURTHER THAT, the Board approves the Project and directs staff to file a Notice of Determination within five working days of this approval; and

RESOLVED FURTHER THAT, the Board designates the Assistant General Manager for Engineering and Construction, or his/her designee, located at 1400 29th Street, Sacramento, CA, 95812, as the custodian of the records in this matter.

BONNIE PANNELL, Chair

ATTEST:

MICHAEL R. WILEY, Secretary

By:

Cindy Brooks, Assistant Secretary

DRAFT INITIAL STUDY/ NEGATIVE DECLARATION - Exhibit A

1225 R Street Stand-By Power Generator

Sacramento Regional Transit District

June 26, 2012

NEGATIVE DECLARATION

Date of Publication of Initial Study/Negative Declaration: June 26, 2012

Project Title: 1225 R Street Stand-By Power Generator **Lead Agency and Project Sponsor:** Sacramento Regional Transit District **Lead Agency Contact Person:** Dawn Fairbrother

Address: PO Box 2110, Sacramento, CA 95812 Telephone: (916) 321-3830 E-mail: dfairbrother@sacrt.com

Project Location: Between 1225 R Street and Whittney Avenue **City and County:** City of Sacramento, Sacramento County

Project Description: The proposed project is the installation and operation of a stand-by emergency generator. It would be an EPA-certified stationary 175-kW system that would use ultra low-sulfur diesel fuel. The generator would be installed on an approximately 100-sf concrete slab, and would include an above-ground approximately 300-gallon tank for diesel fuel storage. The generator would be tested monthly, on a quarterly basis for one hour, and once annually for a longer period. The generator, fuel tank, and ancillary features would be contained within a weatherproof and sound-attenuated enclosure.

THIS PROJECT WILL NOT HAVE A SIGNIFICANT EFFECT ON THE ENVIRONMENT. This finding is based upon the criteria of the Guidelines of the State Secretary for Resources, Sections 15064 (Determining Significant Effect), 15065 (Mandatory Findings of Significance), and 15070 (Decision to Prepare a Negative Declaration), and the reasons documented in the Environmental Evaluation (Initial Study) for the proposed project, which is attached. No mitigation measures are required.

INITIAL STUDY

Table Of Contents

I.	BACKGROUND	5
II.	ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED	6
III.	DETERMINATION	6
IV.	PROJECT DESCRIPTION Project Location Surrounding Land Uses and Setting Project Characteristics	7 7
V.	ENVIRONMENTAL CHECKLIST Introduction 1. Aesthetics 2. Agriculture and Forest Resources 3. Air Quality 4. Biological Resources 5. Cultural Resources 6. Geology and Soils 7. Greenhouse Gas Emissions 8. Hazards and Hazardous Materials 9. Hydrology and Water Quality 10. Land Use and Planning 11. Mineral Resources 12. Noise 13. Population and Housing 14. Public Services 15. Recreation 16. Transportation/Traffic 17. Utilities and Service Systems 18. Other Issues (Energy) 19. Mandatory Findings of Significance	10 11 12 13 16 18 18 19 20 22 24 25 25 29 30 31 31 32 33
VI.	REPORT PREPARERS	35

FIGURES

Figure 1	Project Location	8
•	Project Site	
0	Street-Level Views	
Figure 4	Generator Operation Noise Level Contours	28
U	1	

TABLES

Table 1	Existing Noise Levels	Within and Around the Project Site	26
---------	-----------------------	------------------------------------	----

APPENDIX

I. BACKGROUND

- 1. Project Title: 1225 R Street Stand-By Power Generator
- 2. Lead Agency Name and Address: Sacramento Regional Transit District 1400 29th Street Sacramento, CA 95816
- **3. Contact Person, Phone Number, and E-mail**: Dawn Fairbrother (916) 321-3830 dfairbrother@sacrt.com
- **4. Project Location:** North of 1225 R Street, south of 13th Street light rail station, along Whittney Avenue, between 12th and 13th streets, downtown Sacramento

5.	Project Sponsor's Name and Address:	Sacramento Regional Transit District
		Dawn Fairbrother
		P.O. Box 2110
		Sacramento, CA 95812

- 6. General Plan Designation: City of Sacramento R Street Corridor Master Plan: Urban Corridor High
- 7. Zoning: RMX-SPD Residential Mixed Use Special Planning District
- 8. Description of Project: See Section IV, Project Description.
- 9. Surrounding Land Uses and Setting: See Section IV, Project Description.
- 10. Other Public Agencies Whose Approval is Required: See Section IV, Project Description.

II. ENVIRONMENTAL FACTORS POTENTIALLY AFFECTED

The environmental factors checked below would be potentially affected by this project, involving at least one impact that is a "Potentially Significant Impact" as indicated by the checklist on the following pages.

Aesthetics	Agriculture and Forestry	Air Quality
Biological Resources	Cultural Resources	Geology/Soils
Greenhouse Gas Emissions	Hazards and Hazardous Materials	Hydrology/Water Quality
Land Use/Planning	Mineral Resources	Noise
 Population/Housing	Public Services	Recreation
Transportation/Traffic	Utilities/Service Systems	Mandatory Findings of Significance

III. DETERMINATION

On the basis of this initial evaluation:

- I find that the proposed project COULD NOT have a significant effect on the environment, and a NEGATIVE DECLARATION will be prepared.
- ☐ I find that although the proposed project could have a significant effect on the environment, there will not be a significant effect in this case because revisions in the proposed project have been made by or agreed to by the applicant. A MITIGATED NEGATIVE DECLARATION will be prepared.

I find that the proposed project MAY have a significant effect on the environment, and an ENVIRONMENTAL IMPACT REPORT is required.

- ☐ I find that the proposed project MAY have a "potentially significant impact" or "potentially significant unless mitigated" impact on the environment, but at least one effect 1) has been adequately analyzed in an earlier document pursuant to applicable legal standards, and 2) has been addressed by mitigation measures based on the earlier analysis as described on attached sheets. An ENVIRONMENTAL IMPACT REPORT is required, but it must analyze only the effects that remain to be addressed.
- ☐ I find that although the proposed project could have a significant effect on the environment, because all potentially significant effects (a) have been analyzed adequately in an earlier EIR or NEGATIVE DECLARATION pursuant to applicable standards, and (b) have been avoided or mitigated pursuant to that earlier EIR OR NEGATIVE DECLARATION, including revisions or mitigation measures that are imposed upon the proposed project, nothing further is required.

Michael R. U

une 19 2012

6

IV. PROJECT DESCRIPTION

PROJECT LOCATION

The proposed project is located on the north side of RT's Call Center building at 1225 R Street, Sacramento, California, and south of the RT 13th Street light rail station, along Whittney Avenue between 12th and 13th Streets (Figures 1 and 2).

SURROUNDING LAND USES AND SETTING

Adjacent land uses are RT facilities on the south and west, RT light rail tracks and the 13th Street station and offices on the north, residences on the northeast (across 13th Street), and commercial/retail on the south.

PROJECT CHARACTERISTICS

The proposed project is the installation and operation of a stand-by emergency generator to provide power to RT's Call Center at 1225 R Street in case of a power outage affecting the Call Center. It would be an EPA-certified stationary 175-kW system that would use ultra low-sulfur diesel fuel. The generator would include an above-ground approximately 300-gallon tank (AST) for diesel fuel storage. The generator, AST, and ancillary features would be contained within a weatherproof and sound-attenuated (Level 2) enclosure on an at-grade concrete pad.

Landscaping at the project site would be removed and underlying soil prepared for installing a concrete slab. A crane would be used to place the generator and ancillary features on the slab. Minor utility improvements would be necessary to connect the generator into the electrical system that serves the Call Center.

The generator would undergo regular maintenance, which would include testing on monthly and quarterly basis for one hour, and once annually for a longer period. Fuel levels and quality in the AST would also be checked during maintance Fuel that does not meet specifications¹ would be pumped out and replaced with new fuel. The removal of poor quality fuel and replacement would be infrequent, likely no more than once a year.

REQUIRED PERMITS AND COORDINATION

The proposed project is subject to the California Environmental Quality Act (CEQA). RT is the lead agency for the project. As such, RT must oversee environmental review of the project under CEQA, prior to approving the project. An authority to construct/permit to operate (ATC/PTO) would be required from the Sacramento Metropolitan Air Quality Management District (SMAQMD). Permits would be obtained by the vendor selected by RT to install the generator. The vendor would also be required to obtain all necessary permits from the City of Sacramento.

¹

Diesel fuel contains additives and other compounds, including some water, that separate into layers during long periods of inactivity. This degrades the fuel quality.

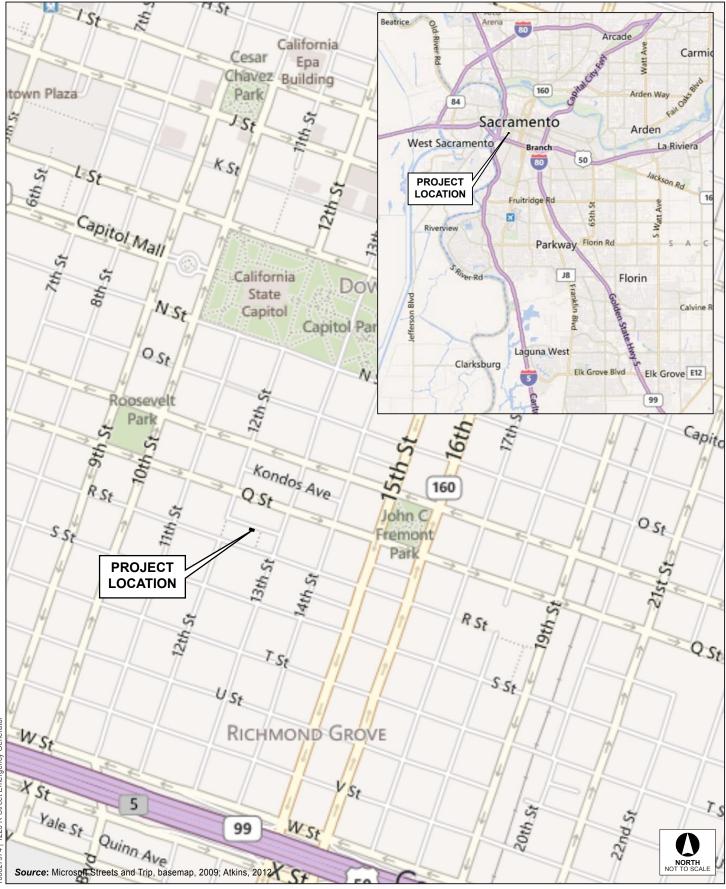


Figure 1 Project Location

ATKINS

V. ENVIRONMENTAL CHECKLIST

INTRODUCTION

The following Checklist contains the environmental checklist form from Appendix G of the CEQA Guidelines. The checklist form is used to identify the impacts of the proposed project. A discussion follows each environmental issue identified in the checklist to provide an explanation for how the checklist was filled out. Included in each discussion are project-specific mitigation measures, where appropriate, to reduce potentially significant impacts to less than significant.

For this checklist, the following designations are used:

Potentially Significant Impact: An impact that could be significant, and for which no mitigation has been identified. If any potentially significant impacts are identified, an EIR must be prepared.

Less than Significant With Mitigation Incorporated: An impact that requires mitigation to reduce the impact to a less-than-significant level.

Less-Than-Significant Impact: Any impact that would not be considered significant under CEQA based on established significance thresholds.

No Impact: The project would not have any impact.

100027974 | 1225 R Street Emergency Generator

Figure 3 Street-Level Views

ATKINS

1. **AESTHETICS**

Wo	uld the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
a.	Have a substantial adverse effect on a scenic vista?				
b.	Substantially damage scenic resources, including, but not limited to, trees, rock outcroppings, and historic buildings along a scenic highway?				•
c.	Substantially degrade the existing visual character or quality of the site and its surroundings?			•	
d.	Create a new source of substantial light or glare that would adversely affect daytime or nighttime views in the area?			•	

Discussion

- a,b. **No Impact**. The project site is within a landscaped area RT's 13th Street outbound light rail station and RT's Call Center. Mature non-native ornamental trees and shrubs² provide a partial visual buffer between the 13th Street light rail station platform and the approximately 16-foot-high Call Center building (Figure 3). The landscaping and building combined do not exhibit unique aesthetic value. Surrounding land uses are highly urbanized and of similar visual quality. The site is not within a scenic corridor or scenic vista.
- c,d. Less-than-Significant Impact. The generator and above-ground fuel tank would occupy a footprint of approximately 100 square feet and would be approximately 10 feet high. All features would be within an enclosure for weatherproofing and sound attenuation. While this would alter the visual character of the site, it would blend in with the building behind it, which is taller than the proposed generator enclosure. Thus, it would not substantially contrast with or be visually obtrusive in the context of surrounding land uses. The enclosure would be finished with non-reflective paint, and there would be no nighttime lighting that could contribute to glare or alter night views.

² Landscaping consists of non-native, ornamental Chinese pastiche (*Pistacia chinensis*), with a shrub understory of holly (*Ilex sp.*) and pittisporum (*Pittisporum sp.*).

Wo	ould the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
a.	Convert Prime Farmland, Unique Farmland, or Farmland of Statewide Importance (Farmland), as shown on the maps prepared pursuant to the Farmland Mapping and Monitoring Program of the California Resources Agency, to non-agricultural use?				•
b.	Conflict with existing zoning for agricultural use or conflict with a Williamson Act contract?				
c.	Conflict with existing zoning for, or cause rezoning of, forest land (as defined in Public Resources Code section 12220(g)), timberland (as defined by Public Resources Code section 4526), or timberland zoned Timberland Production (as defined by Government Code section 51104(g))?				•
d.	Result in the loss of forest land or conversion of forest land to non-forest use?				
e.	Involve other changes in the existing environment that, due to their location or nature, could result in conversion of Farmland to non-agricultural use?				•

2. **AGRICULTURE AND FOREST RESOURCES**

Discussion

No Impact. There would be no impact on agricultural and timber resources because these a-e. resources are not present at the project site or adjoining properties.

AIR QUALITY 3.

Woul	d the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
	Conflict with or obstruct implementation of the applicable air quality plan?				
S	Violate any air quality standard or contribute ubstantially to an existing or projected air quality violation?			•	
r f (Result in a cumulatively considerable net increase of any criteria pollutant for which the project egion is a non- attainment area for an applicable dederal or state ambient air quality standard including releasing emissions that exceed quantitative thresholds for ozone precursors)?			•	
	Expose sensitive receptors to substantial pollutant concentrations?			•	

Would the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
e. Create objectionable odors affecting a substantial number of people?			•	

Discussion

- Less-Than-Significant Impact. The applicable regional air quality plans in effect that apply to RT's network are the Sacramento Metropolitan Air Quality Management District (SMAQMD) State of Progress Plan and 2011 Reasonable Further Progress Plan, both of which address attainment of the federal 8-hour ozone standard. Installation of the generator would generate minor amounts of emissions, but these would be of limited duration and a one-time occurrence. Operation of the generator would occur only during routine maintenance testing and in event of emergency, which would result in only periodic and minimal emissions. For those reasons, the proposed project would not conflict with applicable plans.
- b,c. Less-Than-Significant Impact. Implementation of the proposed project would result in minor construction and limited operational emissions of criteria air pollutants.

Construction would involve installation of a concrete slab on which the generator and fuel tank would be placed using a crane. This activity is expected to take no longer than a few weeks. According to the SMAQMD CEQA Guidelines³, if the proposed construction activities are less than identified in the NO_x Construction Screening Level Tables, then the project would not require full quantification of construction emissions. The proposed project, in terms of square footage and acreage, would not meet any of the established screening thresholds that would indicate that construction emissions may exceed SMAQMD-established thresholds. As such, the pollutant amount would be expected to be below the SMAQMD construction threshold of significance of 85 pounds per day for NOx. It should be noted that SMAQMD does not have a threshold of significance for construction ROG because ROG is not normally generated in large amounts during construction activities. With the implementation of the SMAQMD's Basic Construction Emission Control Practices, which would be required in the contract specifications, the proposed project would not exceed NO_x or ROG emissions of 85 lbs/day, and, therefore, would not require full quantification and would be less than significant.

Operational emissions associated with the proposed project would be limited to the periods during which the generator is in operation. This would be during maintenance (which would include routine testing) and for power outage emergencies. Because the proposed project would not create any new uses, but is intended to ensure the adequate provision of backup electrical power for RT's Call Center under emergency conditions, it would not result in energy consumption that would result in indirect air emissions. Other than trips associated with periodic maintenance, the proposed generator would not generate permanent or long-term additional vehicle trips during operation, and, therefore, no substantial mobile source emissions would be anticipated. Further, the proposed generator would comply with Best Available Control

³ Sacramento Metropolitan Air Quality Management District, CEQA Guidelines, December 2009.

Technology (BACT) and U.S. EPA Tier III standards for emissions. Based on a combined ROG and NO_x emission factor of 3.8 grams/kilowatt-hour and conservatively assuming that on a given day the generator may operate for up to 2 hours during either emergency or maintenance activities, the proposed generator would emit approximately 2.93 lbs/day of ROG and NO_x combined, which is less than the 65 lbs/day operational threshold for ROG and NO_x when considered separately.⁴ Further, such operation would occur only intermittently, so actual emissions would be substantially lower on an annualized or long-term basis.

Therefore, because both construction and operational maximum per-day emissions associated with the proposed project would be below SMAQMD thresholds of significance, this would be a less-than-significant impact. No mitigation is required. Given the minimal amount of construction and limited duration of operation when criteria air pollutants would be generated, this would not result in a cumulatively considerable net increase in pollutants.

d. **Less-Than-Significant Impact.** Emissions of CO and PM are identified as localized emissions and have the potential to adversely impact sensitive receptors from the emission of these pollutants in a relatively small area, most notably at congested intersections. As described above, implementation of the proposed project would not result in an increase in vehicles on the roads, thus not impacting intersections.

Diesel particulate matter (DPM) is emitted from the combustion of diesel fuel, which can be used in generators and vehicles. DPM is a toxic air contamination (TAC). Other TACs are also emitted from the combustion of diesel fuel. The proposed project would generate TAC emissions when the generator is tested and used for emergencies. The generator would be a permitted source under the SMAQMD regulations and would be required to comply with all conditions of the permit once obtained. Based on typical permitting requirements, the generator could be operated up to 50 hours per year. The proposed project anticipates a maximum of 28 hours per year; however, because the SMAQMD methodology requires the generator's emissions to be modeled at full usage, the analysis in this document identifies maximum risk potential for the 50hour operational period.

Using emissions data provided by the generator manufacturer, the ISCST3 model was used to determine the concentration of DPM emissions at nearby receptors.⁵ These concentrations were then converted to an anticipated lifetime cancer risk. Based on the modeling, the maximum potential cancer risk to nearby receptors is 5.64 in a million for a 50-hour annual usage. The maximum potential non-cancer risk to nearby receptors is 0.0035 for a 50-hour annual usage.⁶

The SMAQMD thresholds of significance are 10 in a million for cancer risk and 1 for non-cancer risk on both a project level and cumulative basis. Both the 28- and 50-hour annual usage

⁴ Emissions model output are included in Appendix A.

⁵ While other chemical TACs are emitted, they are emitted in negligible amounts. Because DPM is the greatest contributor to overall TAC risk, and the model assumes a lifetime exposure (which would not occur with an emergency generator used only for testing and emergency operation), the results presented herein are overly conservative.

⁶ Emissions model output are included in Appendix A.

scenarios result in emissions below the SMAQMD thresholds. Therefore, emissions from TAC would be less than significant at both a project and cumulative level.

e. Less-Than-Significant Impact. During construction of the proposed project, emissions from construction equipment, such as diesel exhaust, and VOCs may create objectionable odors. However, these odors would be temporary in nature and would not affect a substantial number of people. During operation of the proposed generator, odors would be primarily associated with the operation of the generator; however, proper maintenance and BACT would reduce the potential for objectionable odors during operation of the generator.

W	ould the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less-Than- Significant Impact	No Impact
a.	Have a substantial adverse effect, either directly or through habitat modifications, on any species identified as a candidate, sensitive, or special status species in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?				•
b.	Have a substantial adverse effect on any riparian habitat or other sensitive natural community identified in local or regional plans, policies, or regulations, or by the California Department of Fish and Game or U.S. Fish and Wildlife Service?				•
c.	Have a substantial adverse effect on federally protected wetlands as defined by Section 404 of the Clean Water Act (including, but not limited to, marshes, vernal pools, coastal wetlands, etc.) through direct removal, filling hydrological interruption, or other means?				•
d.	Interfere substantially with the movement of any native resident or migratory fish or wildlife species or with established native resident or migratory wildlife corridors, or impede the use of native wildlife nursery sites?			•	
e.	Conflict with any local policies or ordinances protecting biological resources, such as a tree preservation policy or ordinance?				•
f.	Conflict with the provisions of an adopted habitat conservation plan, natural community conservation plan, or other approved local, regional, or state habitat conservation plan?				•

4. **BIOLOGICAL RESOURCES**

Discussion

a. **No Impact**. According to a California Natural Diversity Database (CNDDB) query in May 2012, 11 special-status plant and animal species have been observed within the Sacramento East USGS quadrangle: American badger (*Taxidea taxus*), Cooper's hawk (*Accipiter cooperii*), burrowing

owl (*Athene cunicularia*), Swainson's hawk (*Buteo swainsoni*), purple martin (*Progne subis*), bank swallow (*Riparia riparia*), Valley elderberry longhorn beetle (*Desmocerus californicus dimorphus*), vernal pool fairy shrimp (*Branchinecta lynchi*), vernal pool tadpole shrimp (*Lepidurus packardi*), California linderiella (*Linderiella occidentalis*), and Sanford's arrowhead (*Sagittaria sandrodii*). Of these special-status species, only four have the potential to occur within the site. There are some trees on-site⁷ that are well-established and could provide suitable nest sites for Cooper's hawk, Swainson's hawk, bank swallow, and purple martin. However, raptor habitat is marginal due to the urban nature of the project site and surroundings and distance from forgaging areas (open grasslands), so the available nesting habitat is unlikely to be used by either of the hawk species. No nest structures or evidence of nesting, such as whitewash, feathers, castings, or prey remains, were observed in any of the trees on the project site during a site visit in May 2012. The only bird species observed on-site was a northern mockingbird (*Mimus polyglottus*). There is no suitable habitat for the other eight species. Therefore, removal of vegetation to accommodate the project would not result in a loss of protected species, habitat, or nests.

- b. **No Impact**. There are no riparian habitat or sensitive natural communities at or adjoining the project site.
- c. No Impact. There are no federally protected wetlands on or in the vicinity of the project site.
- d. **No Impact.** The project site is located in a highly urbanized area, where there is no native habitat. The project site has been disturbed by construction of the adjacent building and installation of landscaping. There are no native resident or migratory fish or wildlife species or established native resident or migratory wildlife corridors or nursery sites. The federal Migratory Bird Treaty Act (MBTA) protects all common wild birds found in the United States except the house sparrow, starling, feral pigeon, and resident game birds such as pheasant, grouse, quail, and wild turkey. The MBTA makes it unlawful for anyone to kill, capture, collect, possess, buy, sell, trade, ship, import, or export any migratory bird including feathers, parts, nests, or eggs. In addition, California Fish and Game Code Sections 3503, 3503.5, and 3513 prohibit take of all birds and their active nests, including raptors (birds of prey, such as hawks and owls) and other migratory non-game birds that are protected under the MBTA. As noted above, no nests were observed in any of the trees on the project site. Therefore, removal of vegetation (if any) would not remove any nests.
- e. **No Impact**. The proposed project would not involve activities that would conflict with local policies or ordinances protecting biological resources.
- f. **No Impact.** There are no approved Habitat Conservation Plans, Natural Conservation Community Plans, or other adopted plans that would apply to the proposed project.

7

The project site is landscaped. Vegetation is limited to non-native, ornamental Chinese pastiche (*Pistacia chinensis*), with a shrub understory of holly (*Ilex sp.*) and pittisporum (*Pittisporum sp.*).

5. CULTURAL RESOURCES

Wo	uld the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
a.	Cause a substantial adverse change in the significance of a historical resource as defined in Section 15064.5?				
b.	Cause a substantial adverse change in the significance of an archaeological resource pursuant to Section 15064.5?				•
c.	Directly or indirectly destroy a unique paleontological resource or site or unique geologic feature?				•
d.	Disturb any human remains, including those interred outside of formal cemeteries?				•

Discussion

a-d. **No Impact.** The project site is a landscaped area adjoining a modern building and has been disturbed by urban development. Installation of the generator would not involve removal, modification, or any improvements to existing structures. Minor trenching would be needed to install underground electrical connections, but this would only affect subsurface fill at the project site.

6. GEOLOGY AND SOILS

Wo	ould the project:		Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less-Than- Significant Impact	No Impact
a.	Expose people or structure adverse effects, including death involving:	-				
	Earthquake Fault Zon State Geologist for th	t recent Alquist-Priolo ing Map issued by the e area or based on other of a known fault? Refer to				•
	ii. Strong seismic ground	dshaking?				•
	iii. Seismic-related grour liquefaction?	d failure, including				•
	iv. Landslides?					•
b.	Result in substantial soil e topsoil?	rosion or the loss of				

Wo	ould the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less-Than- Significant Impact	No Impact
c.	Be located on a geologic unit or soil that is unstable, or that would become unstable as a result of the project, and potentially result in on- or off- site landslide, lateral spreading, subsidence, liquefaction or collapse?				•
d.	Be located on expansive soil, as defined in Section 1803.5.3 of the 2010 CBC, creating substantial risks to life or property?				•

Discussion

a-d. **No Impact.** The project site is flat and landscaped. It is not vulnerable to fault rupture, liquefaction and related effects, or slope stability problems. Sacramento is not subject to strong groundshaking, but design specifications for the generator will require the unit meet seismic certification in accordance with industry standards for its intended use and location. The generator enclosure would be placed on a concrete slab designed and constructed to withstand the weight of the generator, taking into account fill that underlies the project site. Other than minor trenching, no earthwork is proposed that would be a source of erosion.

7. GREENHOUSE GAS EMISSIONS

Wo	ould the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
a.	Generate greenhouse gas emissions, either directly or indirectly, that may have a significant impact on the environment?			•	
b.	Conflict with an applicable plan, policy or regulation adopted for the purpose of reducing the emissions of greenhouse gases?			•	

Discussion

a, b. Less-than-Significant Impact. Greenhouse gas (GHG) emissions would be generated by the combustion of diesel fuel used in the emergency back-up generator. The generator is expected to be operated up to 28 hours per year. However, the generator would be required to be permitted by the SMAQMD, and the SMAQMD permit allows up to 50 hours of operation per year. Therefore, GHG emissions were conservatively estimated as if the generator would operate for the full 50 hours. SMAQMD methodology requires the construction emission to be combined with the operational emission to provide a combined annual emission. The methodology assumes that a project's lifetime is 40 years; therefore, the construction emissions are amortized over 40 years before being combined with the operational emissions.

The proposed project would result in 2.31 metric tons of carbon dioxide equivalents per year (MT $CO_2e/year$).⁸ The SMAQMD does not have a quantitative threshold for determining significance of a project's emissions. However, the BAAQMD has a threshold of 1,100 MT CO_2e annually below which a project would be considered to be less than significant. The proposed project emissions are well below this threshold. Therefore, the proposed project would result in a less-than-significant impact for GHG emissions generation, when both construction and operations are considered together. Further, because the generator is not implementing any new land uses or increasing vehicle miles traveled, and it would operate only during maintenance testing and in case of emergency, it would result in a minimal annual contribution to cumulative GHGs that would not be cumulatively considerable or conflict with applicable plans or regulations.

8. HAZARDS AND HAZARDOUS MATERIALS

		Significant or Potentially Significant	Less Than Significant With Mitigation	Less- Than- Significant	
WO	uld the project:	Impact	Incorporated	Impact	No Impact
a.	Create a significant hazard to the public or the environment through the routine transport, use, or disposal of hazardous materials?			•	
b.	Create a significant hazard to the public or the environment through reasonably foreseeable upset and accident conditions involving the release of hazardous materials into the environment?			•	
c.	Emit hazardous emissions or involve handling hazardous or acutely hazardous materials, substances, or waste within one-quarter mile of an existing or proposed school?			•	
d.	Be located on a site that is included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5 and, as a result, would it create a significant hazard to the public or the environment?				•
e.	Be located within an airport land use plan area or, where such a plan has not been adopted, be within two miles of a public airport or public use airport, and result in a safety hazard for people residing or working in the project vicinity?				•
f.	Be located within the vicinity of a private airstrip and result in a safety hazard for people residing or working in the project vicinity?				•
g.	Impair implementation of or physically interfere with an adopted emergency response plan or emergency evacuation plan?				•
h.	Expose people or structures to a significant risk of loss, injury, or death involving wildland fires, including where wildlands are adjacent to urbanized areas or where residences are intermixed with wildlands?				•

⁸ Emissions model output are included in Appendix A.

Discussion

a, b. Less-Than-Significant Impact. The generator would be powered by diesel fuel, which would be stored in an adjacent above-ground storage tank (AST) with a capacity of 300 gallons. Diesel is a flammable material regulated under existing hazardous material management regulations and State and local Fire Code regulations. RT is required to comply with all applicable hazardous materials management laws and regulations, which minimizes potential risks during day-to-day operations, and reduces risk for upset or accident conditions. The storage of diesel and transportation of diesel to the site, along with the generation of small amounts of waste oil and lubricants from the generator, have the potential increase risks to the public and environment. However, such risks would be minimal and would not present a substantial hazard, as described below.

The AST that would contain diesel fuel would be double-walled and insulated that would conform to National Fire Protection Association (NFPA) standards for protected steel tanks. The tank would consist of a top-fill system with overfill prevention and spill containment, emergency vent and secondary containment monitoring port, fire extinguisher, and fuel spill countermeasures kit.

Hazardous materials used and stored in larger quantities (i.e., greater than 55 gallons for liquids, 500 pounds for solids, or 200 cubic feet for gases) are subject to Hazardous Materials Management Plan (HMMP) reporting under Section 25503.3(c) of the California Health and Safety Code. The proposed quantity of diesel to be stored in the AST would be subject to HMMP reporting. The HMBP identifies the location of the AST, and the information in the HMBP is readily available to the City of Sacramento Fire Department in case of emergency. In addition, the Sacramento County Environmental Management Department (SCEMD) – as the Certified Unified Program Agency (CUPA) – has monitoring and enforcement authority for ensuring the AST is maintained in accordance with hazardous materials regulations. SCEMD will inspect the tank as required by law.

Fuel in the AST would be tested during routine maintenance for level and quality. If the fuel does not meet specifications, the portion of the fuel not meeting specifications would be pumped out, and new fuel would be added. Waste fuel would be removed by licensed vendor and transported for disposal at a permitted facility to accept hazardous waste. The removal of waste fuel and refueling would be infrequent, no more than once a year. As a result, the amount of hazardous waste would be minimal, and the volume of fuel transported to the site and transferred to the generator would also be minimal, which would minimize the risk of upset or accident conditions.

However, in the unlikely event of a spill or release on-site of 42 gallons or more, in accordance with federal regulations, RT is responsible for notifying SCEMD and the California Emergency Management Agency (Cal EMA). In addition, the City of Sacramento Fire Department provides fire protection and hazardous materials incident response. There are two fire stations within a mile of the site. The closest station (Station 1 at 624 Q Street) is 0.6 miles from the site. The next closest station (Station 5 at 731 Broadway) is 1 mile from the site.

- c. Less-Than-Significant Impact. There are no public or private schools located within ¹/₄ mile of the project site, but there are two day-care centers. Operation of the generator would result in TAC emissions, as identified in Item 3d, but the potential impacts at any single receptor would be miniscule, and would not pose a health risk to sensitive receptors such as the day care centers, as explained in Item 3d.
- d. **No Impact.** The project site is not included on a list of hazardous materials sites compiled pursuant to Government Code Section 65962.5.⁹
- e, f. **No Impact.** The project site is not within a public airport land use plan. Helicopter operations at the UC Davis Medical Center, a few miles away, would not be affected by the project location or operation.
- g. **No Impact.** The proposed project is intended to provide backup power for RT's system in the event of emergency to allow administrative functions and light rail operation to function in an emergency, which would be a benefit of the project. During installation of the generator, equipment would be situated so that it would result in minimal disruption to the adjacent light rail line, which does not provide public roadway access.
- h. **No Impact.** The project site is in an urbanized area of Sacramento that is not adjacent to wildland areas where high fire hazard potential exists.

We	ould the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
a.	Violate any water quality standards or waste discharge requirements?				
b.	Substantially deplete groundwater supplies or interfere substantially with groundwater recharge, resulting in a net deficit in aquifer volume or a lowering of the local groundwater table level (e.g., the production rate of pre-existing nearby wells would drop to a level that would not support existing land uses or planned uses for which permits have been granted)?				•
c.	Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, in a manner that would result in substantial erosion or siltation onsite or offsite?				•

9. HYDROLOGY AND WATER QUALITY

9

California Department of Toxic Substances Control, Envirostor. Search criteria: R Street, Sacramento, California. http://www.envirostor.dtsc.ca.gov/public/. May 2012.

Wo	uld the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
d.	Substantially alter the existing drainage pattern of the site or area, including through the alteration of the course of a stream or river, or substantially increase the rate or amount of surface runoff in a manner that would result in flooding onsite or offsite?				•
e.	Create or contribute runoff water that would exceed the capacity of existing or planned stormwater drainage systems or provide substantial additional sources of polluted runoff?				•
f.	Otherwise substantially degrade water quality?				•
g.	Place housing within a 100-year flood hazard area, as mapped on a federal Flood Hazard Boundary or Flood Insurance Rate Map or other flood hazard delineation map?				•
h.	Place structures within a 100-year flood hazard area that would impede or redirect flood flows?				•
i.	Expose people or structures to a significant risk of loss, injury, or death involving flooding, including flooding as a result of the failure of a levee or dam?				•
j.	Contribute to inundation by seiche, tsunami, or mudflow?				•

Discussion

- a,f. **No Impact.** The proposed project would not generate any discharges subject to water quality regulations or permits, or otherwise contribute pollutants that could degrade water quality. As described in Item 8a, the generator would include secondary containment features to ensure fuel leaks, if any, would be contained so that they do not enter the storm drain system, which drains to the Sacramento River.
- b. **No Impact.** The proposed project would not involve groundwater use and would not affect recharge potential. There would be no effect on groundwater supplies.
- c,d. **No Impact.** The proposed project would have no effect on drainage patterns, erosion/siltation potential, or cause or exacerbate on- or off-site flooding due to its distant location relative to surface water bodies and minimal footprint.
- e. **No Impact.** There would be no changes to the existing rate and amount of stormwater entering local drainages and the stormwater drain system that could affect capacity as a result of the project.
- g, h. **No Impact.** The proposed project would not place housing in special flood hazard areas, and it would not redirect or impede flood flows because no physical changes in flood-prone areas are proposed.

- i. **No Impact.** The project site is in an area protected from flooding by levees along the Sacramento and American rivers and Nimbus and Folsom dams. While flood risk does exist at the project site, this is an existing condition that would not change as a result of the project, and there are no aspects of the project that would alter inundation areas.
- j. **No Impact.** The project site is not located near an ocean coast or enclosed body of water that could produce a seiche. It is not located near areas having steep slopes that would create mudflows.

W	ould the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
a.	Physically divide an established community?				
b.	Conflict with any applicable land use plan, policy, or regulation of an agency with jurisdiction over the project (including, but not limited to, a general plan, specific plan, local coastal program, or zoning ordinance) adopted for the purpose of avoiding or mitigating an environmental effect?				-
c.	Conflict with any applicable habitat conservation plan or natural community conservation plan?				-
d.	Result in land use/operational conflicts between existing and proposed on-site or off-site land uses?				•

10. LAND USE AND PLANNING

Discussion

- a. **No Impact.** The project site is a landscaped area between RT's 13th Street station and RT's Call Center. This would not involve land use changes that would divide an established community.
- **b. No Impact.** The project site is within the R Street Corridor Master Plan. The land use designation is urban corridor high, and the zoning is RMX-SPD (residential mixed use special planning district). The land use plans and policies and zoning regulations prescribe development standards for mixed uses, such as floor area, density, height, and setbacks for such development, among other items. The analysis provided in this checklist concludes the proposed project would not result in any significant environmental effects that would conflict with applicable land use plans, polices, or regulations of any agency with jurisdiction over the project. Further, RT would be required to obtain all necessary permits from the City of Sacramento to construct and operate the generator to ensure it meets City requirements concerning utility connections and public safety.
- c. **No Impact.** There is no applicable habitat conservation plan or natural community conservation plan.

d. **No Impact.** The proposed project is situated in a fully developed urban environment within RT existing facilities and is consistent with existing light rail operations and surrounding land use context. It would not be a substantial source of noise or air emissions, create a public safety risk, or cause an adverse change in the visual environment. Therefore, it would not result in land use or operational conflicts on- or off-site.

We	ould the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
a.	Result in the loss of availability of a known mineral resource that would be of value to the region and the residents of the state?				
b.	Result in the loss of availability of a locally important mineral resource recovery site delineated on a local general plan, specific plan, or other land use plan?				•

11. MINERAL RESOURCES

Discussion

a, b. **No Impact.** The availability of mineral resources would not be affected by the proposed project because there are no mineral resources at the project site.

12. NOISE

We	ould the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
a.	Exposure of persons to or generation of noise levels in excess of standards established in the local general plan or noise ordinance, or applicable standards of other agencies?				
b.	Expose persons to or generate excessive groundborne vibration or groundborne noise levels?			•	
c.	Result in a substantial permanent increase in ambient noise levels in the project vicinity above levels existing without the project?			•	
d.	Result in a substantial temporary or periodic increase in ambient noise levels in the project vicinity above levels existing without the project?			•	
e.	Be located within an airport land use plan area, or, where such a plan has not been adopted, within two miles of a public airport or public use airport and expose people residing or working in the project vicinity to excessive noise levels?				•

Would the project:		Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
f.	Be located in the vicinity of a private airstrip and expose people residing or working in the project vicinity to excessive noise levels?				

Discussion

Existing measured noise levels at the nearest residential property are presented in Table 1, which demonstrate the existing ambient noise level in the vicinity of the project site is already high (73 dBA).

	TABLE 1 EXISTING NOISE LEVELS WITHIN AND AROUND							
	-		THE PROJECT SITE	NT •				
No	Location	Time of Day	Observed Primary Sources of Noise	Noise L _{eq} (dBA)	Level Sta L _{min} (dBA)	L _{max} (dBA)		
1	At proposed generator location	1:57 pm	Light Rail (warning bells, approach, braking, speaker announcements, depart) HVAC, platform noise (people talking loudly)	73.8	59.6	89.0		
2	At residential property line adjacent to (northeast of) project site: 1714 13th St - backyard	2:14 pm	Light Rail (warning bells, approach, braking, speaker announcements, depart) HVAC, platform noise (people talking loudly)	73.1	60.2	84.4		
Notes Sourc		en 10:30 and 1	11:30 AM on January 28, 2010.					

The applicable noise standards for evaluating the proposed project are:

City of Sacramento Noise Ordinance. The City of Sacramento Noise Control Ordinance, found in the Sacramento Municipal Code Title 8 – Health and Safety, Chapter 8.68, sets limits for exterior noise levels on designated residential property. The ordinance states that noise shall not exceed 55 dBA ("A-weighted decibels")¹⁰ during any cumulative 30-minute period in any hour during the day (7:00 a.m. to 10:00 p.m.), and 50 dBA during any cumulative 30-minute period in any hour during the night (10:00 p.m. to 7:00 a.m.). The ordinance sets somewhat higher noise limits for noise of shorter duration; however, noise shall never exceed 75 dBA in the day and 70 dBA at night. Construction activities are conditionally exempt from the Noise Ordinance, subject to certain limitations.

City of Sacramento General Plan. The City of Sacramento General Plan Environmental Constraints Noise section has established Goals and Policies relating to evaluating noise impacts

¹⁰ The A-weighted decibel scale (dBA) is an industry convention that specifically relates noise to human sensitivity because humans are not equally sensitive to a given sound level at all frequencies. The A-weighted decibel scale does this by placing more importance on frequencies that are more noticeable to the human ear.

due to projects. The noise reduction goal for the City is to minimize noise impacts on human activity to ensure the health and safety of the community. The City of Sacramento General Plan (2009) policies establish interior and exterior noise standards for land use compatibility and allowable exterior incremental noise standards for projects that would increase existing noise levels that would require mitigation measures when the allowable noise level increment is exceeded (General Plan Environmental Constraints Table EC2). For the measured ambient noise environment at the project site (73 dBA, see Table 1, above), the applicable exterior incremental noise impacts to adjacent noise sensitive uses when operational noise thresholds contained in the City of Sacramento Noise Ordinance are exceeded.

a. Less-Than-Significant Impact. Temporary, intermittent elevated noise levels would occur on and near the proposed project site during the construction phase that could affect nearby sensitive receptors. The mix of equipment operating would vary depending on the activity being conducted on-site and noise levels would vary based on the amount of equipment in operation and the location of the activity. Reference data illustrate that operation of anticipated on-site construction equipment (cement truck, crane) would result in noise levels between approximately 75 Aweighted decibels (dBA) and 100 dBA when measured 50 feet from the source. The closest noise-sensitive receptors are single-family residences approximately 120 feet northeast. Assuming a noise reduction of approximately 3 dBA for every doubling of distance from the source, construction noise could be experienced at these receptors. However, as required by Section 8.68.080(E) of the City Code, construction activities would be limited to occur only between the hours of 7:00 A.M. and 6:00 P.M., Monday through Saturday, and 9:00 A.M. and 6:00 P.M. on Sundays and public holidays. Section 8.68.080(E) also requires the use of exhaust and intake silencers for internal combustion engines used during construction to reduce noise levels associated with construction activities. These restrictions would be included in contract specifications.

Operational noise would be limited to noise levels associated with the periodic testing during maintenance, and from peration of the generator itself in an emergency. Figure 4 shows estimated noise levels near the enclosure and off-site. Based on generator specifications, with a Level 2 sound enclosure, and accounting for additional attenuation of noise over distance, noise levels from generator operation would not be expected to exceed 66 dBA at the nearest property line. Figure 4 shows For the measured ambient noise environment at the project site (73 dBA), the applicable exterior incremental noise impact standard is an increase of 1 dBA. The noise levels from generator operation would contribute to ambient noise levels, but it would not exceed the allowable threshold of 1 dBA established by the City of Sacramento General Plan. It also would not result in an increase in noise levels that would be considered readily discernible (i.e. more than 3 dBA).

Further, it should be noted that the generator would not be run on a continuing basis, only periodically for maintenance, (which would include testing), and, when necessary, during a power emergency affecting the Call Center. Therefore, the proposed project is not expected to generate a substantial temporary or periodic increase in ambient noise at sensitive receptors.

ATKINS

b. Less-Than-Significant Impact. Installation of the concrete pad and placing the generator and AST enclosure on the pad could expose nearby off-site noise-sensitive receptors to elevated levels of groundborne vibration. Based on FTA's Transit Noise and Vibration Impact Assessment (2006) reference vibration levels for a heavy truck (86 VdB at 25 feet) and the existing distance to adjacent sensitive receptors from the project site (approximately 120 feet), groundborne vibration associated from installation equipment would attenuate to 70 VdB at the nearest sensitive receptor. The FTA identifies a vibration level of 72 VdB to be the level where residences where people normally sleep would be impacted. Equipment installation activites would occur during the daytime and would be below the vibration level FTA criteria. Therefore, equipment used to install the generator would not be considered substantial or excessive.

Operation of the proposed generator would occur periodically at the project site and within a developed area that is subject to regular light-rail activity. As such, potential vibration associated within the proposed generator would not be considered substantial or occur over larger periods of time. Further, the proposed project would be designed in accordance with National Electrical Manufacturers Association (NEMA) standards. As such, the proposed generator is not anticipated to result in excessive vibration at the nearest sensitive receptors (single-family homes along 13th Street).

- c. Less-Than-Significant Impact. The long-term operation of the proposed project would consist only of periodic maintenance, testing, and only in case of emergency. It would not be a continuous or permanent source of noise. Noise increases would not be considered substantial. Therefore, impacts would be less than significant.
- d. Less-Than-Significant Impact. The proposed project would have a less-than-significant impact associated with a temporary or periodic increase in ambient noise levels in the proposed project vicinity. As discussed above, noise generated during installation of the equipment could create temporary or periodic increases in ambient noise levels. However, construction work hours are restricted by provisions in the Municipal Code.
- e, f. **No Impact.** The proposed project is an unoccupied non-residential use, and no people would be exposed to aircraft noise.

Wo	ould the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
a.	Induce substantial population growth in an area, either directly (e.g., by proposing new homes and businesses) or indirectly (e.g., through extension of roads or other infrastructure)?				•
b.	Displace a substantial number of existing housing units, necessitating the construction of replacement housing elsewhere?				•

13. POPULATION AND HOUSING

c.	Displace a substantial number of people,		
	necessitating the construction of replacement housing elsewhere?		

Discussion

- a. **No Impact.** The proposed project would not result in an increase in population that would result in the need for new housing or require the extension of infrastructure.
- b, c. No Impact. The proposed project would not displace people or housing.

14. PUBLIC SERVICES

Would the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less-Than- Significant Impact	No Impact
Result in substantial adverse physical impacts associated with the provision of new or physically altered governmental facilities or a need for new or physically altered governmental facilities, the construction of which could cause significant environmental impacts, in order to maintain acceptable service ratios, response times, or other performance objectives for any of the following public services:				
a. Fire protection?			•	•
b. Police protection?				
c. Schools?				•
d. Parks?				•
e. Other public facilities?				•

Discussion

- a. Less-than-Significant Impact. The project would include an above-ground diesel fuel storage tank. In the unlikely event of a spill or fire, the City of Sacramento Fire Department could provide response services from Station 1 (624 Q Street, 0.6 miles away) or Station 5 (731 Broadway, 1 mile away). However, given the small volume of stored fuel and operational characteristics of the generator, no additional fire protection services would be required that would result in the need for additional fire facilities.
- b,e. **No Impact.** The proposed project would not require increased police protection because RT provides its own security for its facilities.
- c,d. **No Impact.** The proposed project would not result in a population increase that would require schools or parks.

15. RECREATION

Wo	ould the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
a.	Increase the use of existing neighborhood and regional parks or other recreational facilities such that substantial physical deterioration of the facility would occur or be accelerated?				•
b.	Include recreational facilities or require the construction or expansion of recreational facilities that might have an adverse physical effect on the environment?				•

Discussion

a, b. **No Impact**. The proposed project would have no impact on recreational facilities because there are no facilities at the site, and the project would not increase the demand for facilities.

16. TRANSPORTATION/TRAFFIC

Wo	ould the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
a.	Conflict with an applicable plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, taking into account all modes of transportation including mass transit and non-motorized travel and relevant components of the circulation system, including but not limited to intersections, streets, highways and freeways, pedestrian and bicycle paths, and mass transit?				
b.	Conflict with an applicable congestion management program, including, but not limited to level of service standards and travel demand measures, or other standards established by the county congestion management agency for designated roads or highways?				•
c.	Result in a change in air traffic patterns, including either an increase in traffic levels or a change in location that results in substantial safety risks?				•
d.	Substantially increase hazards because of a design feature (e.g., sharp curves or dangerous intersections or incompatible uses (e.g., farm equipment)?				•
e.	Result in inadequate emergency access?				•

Would the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
f. Conflict with adopted policies, plans or programs regarding public transit, bicycle, or pedestrian facilities, or otherwise decrease the performance or				

safety of such facilities?

Discussion

- a,b. **No Impact.** The proposed project is the construction and operation of an emergency generator located on RT property, which would not conflict with any plan, ordinance or policy establishing measures of effectiveness for the performance of the circulation system, congestion management program.
- c. **No Impact.** The proposed project would not result in a change in air traffic patterns. See Item 9e.
- d. **No Impact.** The project site is situated between RT's 13th Street light rail station and an RT building. Construction and operation of the generator would not increase hazards because of a design feature.
- e. No Impact. See Item 9g.
- f. **No Impact.** There are no adopted policies, plans or programs regarding public transit, bicycle, or pedestrian facilities that apply to the proposed project.

17. UTILITIES AND SERVICE SYSTEMS

Wo	ould the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
a.	Exceed wastewater treatment requirements of the applicable Regional Water Quality Control Board?				•
b.	Require or result in the construction of new water or wastewater treatment facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				•
c.	Require or result in the construction of new stormwater drainage facilities or expansion of existing facilities, the construction of which could cause significant environmental effects?				•
d.	Have sufficient water supplies available to serve the project from existing entitlements and resources, or would new or expanded entitlements be needed?				•

Wo	ould the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less- Than- Significant Impact	No Impact
e.	Result in a determination by the wastewater treatment provider that serves or may serve the project that it has adequate capacity to serve the project's projected demand in addition to the provider's existing commitments?				•
f.	Be served by a landfill with sufficient permitted capacity to accommodate the project's solid waste disposal needs?			•	
g.	Comply with federal, state, and local statutes and regulations related to solid waste?			•	

Discussion

- a-e. **No Impact.** The proposed project would not generate wastewater, require water, or increase storm flows that would require new facilities. There are no applicable wastewater treatment requirements.
- f,g. **Less-Than-Significant Impact.** Construction of the concrete pad and installation of the equipment would result a minor amount of solid waste, which would not affect landfill capacity.

18. OTHER ISSUES (ENERGY)

Would the project:

a. Result in, contribute to, or substantially affect other environmental issues(s)? If so, specify below and evaluate:

Discussion

a. Less-Than-Significant Impact. The generator would only operate during testing and in an emergency and would rely on diesel fuel to generate electricity. Minimal amounts of electricity would be used during construction. There would be no substantial long-term or permanent increase in energy demand as a result of the proposed project.

We	ould the project:	Significant or Potentially Significant Impact	Less Than Significant With Mitigation Incorporated	Less-Than- Significant Impact	No Impact
a.	Does the project have the potential to degrade the quality of the environment, substantially reduce the habitat of a fish or wildlife species, cause a fish or wildlife population to drop below self-sustaining levels, threaten to eliminate a plant or animal community, reduce the number or restrict the range of a rare or endangered plant or animal, or eliminate important examples of the major periods of California history or prehistory?				
b.	Does the project have impacts that are individually limited but cumulatively considerable? ("Cumulatively considerable" means that the incremental effects of a project are considerable when viewed in connection with the effects of past projects, the effects of other current projects, and the effects of probable future projects.)				•
c.	Does the project have environmental effects that will cause substantial adverse effects on human beings, either directly or indirectly?			•	

19. MANDATORY FINDINGS OF SIGNIFICANCE

Discussion

- **a. No Impact.** The proposed project does not involve any activities that would involve grounddisturbance beyond the top few inches of soil in a landscaped area adjacent to an existing building or alteration of any existing structures at the site. There would be no biological resources or cultural resources impacts.
- **b.** No Impact. The proposed project would generate air emissions and GHGs, but the project's contribution would not be cumulatively considerable, and the project would not conflict or obstruct implementation of the applicable air quality plan (Item 3a-b) or laws adopted to address GHG (Item 7). The proposed project would result in negligible noise impacts at the project level (refer to Item 12), and would not contribute to a cumulative impact.

For all other remaining topics, due to the nature of project, the project would have no impact or less-than-significant impact, and, therefore, would not result in cumulatively considerable impacts at the project level for aesthetics, agriculture and forest resources, biological resources, cultural resources, geology and soils, hazards and hazardous materials, hydrology and water quality, land use and planning, mineral resources, population and housing, public services, recreation, utilities and service systems, and energy.

c. Less-Than-Significant Impact. There would be no significant adverse effects on human beings. As explained in Items 3 (Air Quality) and 11 (Noise), there would be no substantial increase in air emissions or noise levels as a result of the proposed project. For all other topics, there would be either no impact or a less-than-significant impact.

VI. REPORT PREPARERS

Atkins 1410 Rocky Ridge Drive, Suite 140 Roseville, CA 95661 916-782-7275 Project Manager: Alice Tackett

Appendix A

Supporting Documentation:

Air Quality and Greenhouse Gas Emissions

Health Risk Assumptions

Project is a using a GENERAC Industrial Diesel Generator Set (SD175) Generator Specs: $^{1,23}\!\!$

kW Grams/kW-hr	175 0.08 3.80	PM NO _x +NMHC	:								
	1.20	CO									
Exhaust Flow	internal				At exhaust	port					
	1,212.0 (
		m3/min	0.57166667	m3/sec	45.3	m/s					
Exhaust Temp	internal		At exhaust por								
	1,040.0 (739.8 (
	560.0	°C	872 °	°C							
Exhaust Outlet	4.0 i	inch	0.33333333	ft	0.1028	meters					
Enclosure length	_										
Enclosure Width	15.54336	meters									
Enclosure Height	21.023628	meters									
Emissions Std. Category	Tier 3 I	EPA Rating									
Assumptions											
Hours of Operation ⁴	50.0 ו	maximum h	ours per year								
	28.0	hours per ye	ear (project. 80 mi	n/month + 6	0 minutes per o	quarter + 8 h	ours per yea	ar) ⁵			
lbs/gram	0.0022										
UTM	631222.30	4270240.4									
									lbs/day (2		
Emissions:	g/KW-hr	KW	Hours/year	g/year	sec/year	g/sec	lbs/year	lbs/hour	hours)		
PM	0.08	175.0	50	700	3.15E+07		-	-			
	0.08	175.0	28.0	392	3.15E+07	1.24E-05	-	-			
NO _x	3.80	175.0	50	33,250	-	-	73.30	1.47	2.93		
	3.80	175.0	28.0	18,620	-	-	41.05	1.47	2.93		
CO	1.20	175.0	50	10,500	-	-	23.15	0.46	0.93		

28.0

5,880

12.96

-

-

0.46

0.93

Sources:

1 GENERAC Industrial Power, Industrial Diesel Generator Set Primary Codes and Standards, 2011.

1.20

2 GENERAC Industrial Power, Statement of Exhaust Emissions 2012 IVECO Diesel Fueled Generator, 2/2012.

3 BAAQMD personal communication with BAAQMD staff on default generator information.

4 Sacramento Metropolitan Air Quality Management District. Stationary Internal Combustion Engine Policy Manual. January 1, 2001.

175.0

5 SRT (Project Description)

SRT Generator Health Risk Assessment Calculations Operational Year 2012 50 hours of operation/year

		Modeled		Annual	Daily breathing	Inhalation	Exposure frequency	Exposure Duration	
		DPM	Emission	DPM	rate (DBR)	absorption	(EF)	(ED)	Conversion
	Receptor	(µg/m³)	Factor	(µ g/m³)	(L/kg bw-day)	factor	(days/year)	(years)	factor (1x10 ⁻⁶)
Max: Residential		797.588	2.22E-05	0.01770	302	1	350	70	0.000001
				70-year Ex	posure Duration				
<u>R_1</u>	R_1	20.637	2.22E-05	0.00046	302	1	350	70	0.000001
R_2	R_2	44.849	2.22E-05	0.00100	302	1	350	70	0.000001
R_3	R_3	472.598	2.22E-05	0.01049	302	1	350	70	0.000001
R_4	R_4	494.659	2.22E-05	0.01098	302	1	350	70	0.000001
R_5	R_5	166.386	2.22E-05	0.00369	302	1	350	70	0.000001
R_6	R_6	120.566	2.22E-05	0.00268	302	1	350	70	0.000001
R_7	R_7	88.458	2.22E-05	0.00196	302	1	350	70	0.000001
R_8	R_8	123.854	2.22E-05	0.00275	302	1	350	70	0.000001
R_9	R_9	65.696	2.22E-05	0.00146	302	1	350	70	0.000001
R_10	R_10	14.522	2.22E-05	0.00032	302	1	350	70	0.000001
R_11	R_11	121.122	2.22E-05	0.00269	302	1	350	70	0.000001
R_12	R_12	52.317	2.22E-05	0.00116	302	1	350	70	0.000001

SRT Generator Health Risk Assessment Cal Operational Year 2012

		Averaging period (AT)		Cancer Potency	Cancer		Reference	Non- Cancer	
	Receptor	(days)	Dose	Value	Risk	Significant?	Level	Risk	Significant?
Max: Residential		25550	5.13E-06	1.1	5.640	No	5	0.00354	No
R_1	R_1	25550	1.33E-07	1.1	0.146	No	5	0.00009	No
R_2	R 2	25550	2.88E-07	1.1	0.317	No	5	0.00020	No
R_3	 R_3	25550	3.04E-06	1.1	3.342	No	5	0.00210	No
R_4	R_4	25550	3.18E-06	1.1	3.498	No	5	0.00220	No
R_5	R_5	25550	1.07E-06	1.1	1.176	No	5	0.00074	No
R_6	R_6	25550	7.75E-07	1.1	0.852	No	5	0.00054	No
R_7	R_7	25550	5.69E-07	1.1	0.625	No	5	0.00039	No
R_8	R_8	25550	7.96E-07	1.1	0.876	No	5	0.00055	No
R_9	R_9	25550	4.22E-07	1.1	0.465	No	5	0.00029	No
R_10	R_10	25550	9.33E-08	1.1	0.103	No	5	0.00006	No
R_11	R_11	25550	7.79E-07	1.1	0.856	No	5	0.00054	No
R_12	R_12	25550	3.36E-07	1.1	0.370	No	5	0.00023	No

```
* *
*****
* *
** ISCST3 Input Produced by:
** AERMOD View Ver. 7.5.0
** Lakes Environmental Software Inc.
** Date: 5/23/2012
** File: C:\AERMOD\SRT Generator\SRTGEN\SRTGEN.INP
* *
* *
* *
*****
** ISCST3 Control Pathway
                       * *
* *
CO STARTING
   TITLEONE C:\AERMOD\SRT Generator\SRTGEN\SRTGEN.isc
   MODELOPT DFAULT CONC URBAN
  AVERTIME 24 ANNUAL
  POLLUTID PM-10
  TERRHGTS ELEV
   RUNORNOT RUN
  MULTYEAR H6H SRTGEN.sal
  ERRORFIL SRTGEN.err
CO FINISHED
*****
** ISCST3 Source Pathway
* *
* *
SO STARTING
** Source Location **
** Source ID - Type - X Coord. - Y Coord. **
LOCATION STCK1 POINT 631221.170 4270241.950 4.880
** Source Parameters **
                                                             0.101
  SRCPARAM STCK1
                           1.0
                                  2.362 666.372 45.30000
** Building Downwash **
   BUILDHGT STCK1
                          4.57
                                   4.57
                                            4.57
                                                    4.57
                                                            4.57
                                                                     4.57
   BUILDHGT STCK1
                           4.57
                                   4.57
                                            4.57
                                                    4.57
                                                             4.57
                                                                     4.57
   BUILDHGT STCK1
                           4.57
                                   4.57
                                            4.57
                                                    4.57
                                                            4.57
                                                                     4.57
                                                            4.57
  BUILDHGT STCK1
                           4.57
                                   4.57
                                            4.57
                                                    4.57
                                                                     4.57
                           4.57
                                                    4.57
   BUILDHGT STCK1
                                   4.57
                                            4.57
                                                            4.57
                                                                     4.57
  BUILDHGT STCK1
                                   4.57
                                            4.57
                           4.57
                                                    4.57
                                                            4.57
                                                                     4.57
   BUILDWID STCK1
                          38.08
                                           40.21
                                                   43.35
                                  35.85
                                                            45.17
                                                                    45.62
   BUILDWID STCK1
                          44.68
                                  42.39
                                           38.81
                                                   34.05
                                                            29.91
                                                                    35.25
   BUILDWID STCK1
                          39.52
                                  42.60
                                           44.38
                                                   44.81
                                                            43.87
                                                                    41.61
  BUILDWID STCK1
                                                            45.17
                          38.08
                                  35.85
                                           40.21
                                                   43.35
                                                                    45.62
   BUILDWID STCK1
                                           38.81
                                                   34.05
                          44.68
39.52
                                  42.39
                                                            29,91
                                                                    35.25
  BUILDWID STCK1
                                  42.60
                                           44.38
                                                   44.81
                                                            43.87
                                                                    41.61
   SRCGROUP ALL
SO FINISHED
* *
*****
** ISCST3 Receptor Pathway
* *
* *
RE STARTING
   GRIDCART UCART1 STA
                  XYINC 631123.13 30 10.00 4270113.05 28 10.00
                  ELEV
                                4.88
                                        4.88
                                                4.88
                                                         4.88
                                                                 4.88
                          1
                          1
                                4.88
                                        4.88
                                                4.88
                                                         4.88
                                                                 4.88
                  ELEV
                  ELEV
                          1
                                4.88
                                        4.88
                                                4.57
                                                         4.57
                                                                 4.57
                  ELEV
                          1
                                4.57
                                        4.57
                                                4.57
                                                         4.57
                                                                 4.57
                                4.57
                                        4.57
                                                         4.57
                  ELEV
                          1
                                                4.57
                                                                 4.57
                                        4.88
                  ELEV
                          2
                                4.88
                                                4.88
                                                         4.88
                                                                 4.88
                  ELEV
                          2
                                4.88
                                        4.88
                                                         4.88
                                                                 4.88
                                                4.88
                          2
                                        4.57
                                                         4.57
                  ELEV
                                4.88
                                                 4.57
                                                                  4.57
                  ELEV
                          2
                                4.57
                                        4.57
                                                4.57
                                                         4.57
                                                                 4.57
                  ELEV
                          2
                                4.57
                                        4.57
                                                4.57
                                                         4.57
                                                                 4.57
                                                         4.57
                                4.57
                                        4.57
                                                                 4.57
                  ELEV
                          3
                                                4.57
                                4.57
                                        4.57
                                                         4.57
                                                                 4.57
                  ELEV
                          3
                                                4.57
                                        4.57
                  ELEV
                          3
                                4.57
                                                4.57
                                                         4.57
                                                                 4.57
                                4.57
                                        4.57
                                                 4.57
                                                         4.57
                                                                 4.57
                  ELEV
                          3
                   ELEV
                          3
                                4.57
                                        4.57
                                                4.57
                                                         4.57
                                                                 4.57
```

4.88

4.88

4.57

4.57

4.57

4.88

4.88

4.57

4.57

4.57

4.57

4.57

4.57

4.57

4.88

ELEV	4	4.57	4.57	4.57	4.57	4.57	4.57
ELEV	4	4.57	4.57	4.57	4.57	4.57	4.57
	4		4.57	4.57			
ELEV		4.57			4.57	4.57	4.57
ELEV	4	4.57	4.57	4.57	4.57	4.57	4.57
ELEV	4	4.57	4.57	4.57	4.57	4.57	4.88
ELEV	5	4.57	4.57	4.57	4.57	4.57	4.57
ELEV	5	4.57	4.57	4.57	4.57	4.57	4.57
ELEV	5	4.57	4.57	4.57	4.57	4.57	4.57
ELEV	5	4.57	4.57	4.57	4.57	4.57	4.57
ELEV	5	4.57	4.88	4.88	4.57	4.88	4.88
ELEV	6	4.57	4.57	4.57	4.57	4.57	4.57
ELEV	6	4.57	4.57	4.57	4.57	4.57	4.57
ELEV	6	4.57	4.57	4.57	4.57	4.57	4.57
		4.57	4.57	4.57	4.57		
ELEV	6					4.57	4.88
ELEV	6	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	7	4.57	4.57	4.57	4.57	4.57	4.57
ELEV	7	4.57	4.57	4.57	4.57	4.57	4.57
ELEV	7	4.57	4.57	4.57	4.57	4.57	4.57
ELEV	7	4.57	4.57	4.57	4.57	4.57	4.88
ELEV	7	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	8	4.57	4.88	4.88	4.57	4.88	4.88
ELEV	8	4.57	4.88	4.88	4.57	4.88	4.88
ELEV	8	4.57	4.88	4.88	4.57	4.88	4.88
ELEV	8	4.57	4.88	4.88	4.57	4.88	4.88
ELEV	8	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	9	4.88	4.88	4.88	4.88	4.88	4.88
						4.88	
ELEV	9	4.88	4.88	4.88	4.88		4.88
ELEV	9	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	9	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	9	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	10	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	10	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	10	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	10	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	10	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	11	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	11	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	11	4.88	4.88	4.88	4.88	4.88	4.88
	11	4.88	4.88	4.88	4.88	4.88	4.88
ELEV							
ELEV	11	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	12	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	12	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	12	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	12	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	12	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	13	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	13	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	13	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	13	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	13	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	14	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	14	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	14	4.88	4.88	4.88	4.88	4.88	4.88
				4.88			
ELEV	14	4.88	4.88		4.88	4.88	4.88
ELEV	14	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	15	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	15	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	15	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	15	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	15	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	16	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	16	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	16	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	16	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	16	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	17	4.88	5.18	5.18	4.88	4.88	4.88
ELEV	17	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	17	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	17	4.88	4.88	4.88	4.88	4.88	4.88
		4.88	4.88	4.88	4.88	4.88	4.88
ELEV	17						
ELEV	18	5.18	5.18	5.18	5.18	5.18	4.88
ELEV	18	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	18	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	18	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	18	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	19	5.18	5.18	5.18	5.18	5.18	4.88
ELEV	19	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	19	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	19	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	19	4.88	4.88	4.88	4.88	4.88	4.88
ELEV	20	5.18	5.18	5.18	5.18	5.18	5.18

		ELEV ELEV	20 20	4.88	5.18 5.18	5.18 5.18	4.88 4.88	5.18 5.18
		ELEV ELEV	20 20 21	4.88	4.88 4.88	4.88 4.88	4.88 4.88	4.88
		ELEV ELEV	21 21	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18
		ELEV	21	5.18	5.18	5.18	5.18	5.18
		ELEV ELEV	21 21	5.18 4.88	5.18 4.88	4.88 4.88	4.88 4.88	4.88 4.88
		ELEV	22	5.18	5.18	5.18	5.18	5.18
		ELEV	22	5.18	5.18	5.18	5.18	5.18
		ELEV ELEV	22 22	5.18 5.18	5.18 5.18	5.18 4.88	5.18 4.88	5.18 4.88
		ELEV	22	4.88	4.88	4.88	4.88	4.88
		ELEV ELEV	23 23	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18
		ELEV	23	5.18	5.18	5.18	5.18	5.18
		ELEV ELEV	23 23	5.18 4.88	5.18 5.18	5.18 5.18	4.88 4.88	5.18 5.18
		ELEV	24	5.18	5.18	5.18	5.18	5.18
		ELEV ELEV	24 24	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18
		ELEV	24	5.18	5.18	5.18	5.18	5.18
		ELEV	24	5.18	5.18	5.18	5.18	5.18
		ELEV ELEV	25 25	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18
		ELEV	25	5.18	5.18	5.18	5.18	5.18
		ELEV ELEV	25 25	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18
		ELEV	26	5.18	5.18	5.18	5.18	5.18
		ELEV ELEV	26 26	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18
		ELEV	26	5.18	5.18	5.18	5.18	5.18
		ELEV ELEV	26 27	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18
		ELEV	27	5.18	5.18	5.18	5.18	5.18
		ELEV ELEV	27 27	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18
		ELEV	27	5.18	5.18	5.18	5.18	5.18
		ELEV	28	5.18	5.18	5.18	5.18	5.18
		ELEV ELEV	28 28	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18	5.18 5.18
		ELEV	28	5.18	5.18	5.18	5.18	5.18
GRIDCARI	UCART1	ELEV END	28	5.18	5.18	5.18	5.18	5.18
* DESCRREC								
DISCCARI DISCCARI		88.47 66.78		48.43	4.88 4.88			
DISCCARI	6312	37.03	42702	67.03	4.88			
DISCCARI DISCCARI		28.85 93.15		68.97 80.35	4.88 4.88			
DISCCARI		94.00	42702	93.08	4.88			
DISCCART		80.06 04.41		96.46 43.70	4.88 4.88			
DISCCARI DISCCARI		89.52		49.30	4.88			
DISCCART		87.21		20.37	4.88			
DISCCARI DISCCARI		51.74 72.61		08.37	4.88 4.88			
* Discrete	Cartesi	an Plar	nt Boun		Primary Re	ceptors		
* Plant Bo * DESCRREC				n plant.	boundary	Primarv R	eceptors"	
DISCCARI	6312	19.26	42702	43.54	4.88	- 1	± · · ·	
DISCCARI		19.42 23.62	42702 42702		4.88 4.88			
DISCCARI	6312	23.93			4.88			
E FINISHEI *								
* * * * * * * * * *				******	*			
* ISCST3 M *******				******	*			
*								
* E STARTING								
INPUTFII	\\s		\MnM\S	ACOAK~2	.ASC			
	10 METE		יייאית א סי		יייניג שעדיי			
UAIRDATA					TIVE_ARPT			
				—				
E FINISHED * *********	* * * * * * * *	* * * * * * *	*****	******	*			

5.18 5.18 4.88 5.185.18

******* FATAL ERROR MESSAGES ******* *** NONE ***

******* WARNING MESSAGES ******* CO W353 25 MYEAR :MULTYEAR Card for PM10 Processing Applies Only for PRE-1997 RE W282 228 CHK_EL:RecElev < SrcBase; See non-DFAULT HE>ZI option in MCB#9

*** 05/23/12 *** 09:29:23 **MODELOPTs: PAGE 1 URBAN ELEV DFAULT MULTYR CONC *** MODEL SETUP OPTIONS SUMMARY * * * **Intermediate Terrain Processing is Selected **Model Is Setup For Calculation of Average CONCentration Values. -- SCAVENGING/DEPOSITION LOGIC --**Model Uses NO NET DEPLETION. DDPLETE = F **Model Uses NO WET DEPLETION. WDPLETE = F **NO WET SCAVENGING Data Provided. **NO GAS DRY DEPOSITION Data Provided. **Model Does NOT Use GRIDDED TERRAIN Data for Depletion Calculations **Model Uses URBAN Dispersion. **Model Uses Regulatory DEFAULT Options: 1. Final Plume Rise. 2. Stack-tip Downwash. 3. Buoyancy-induced Dispersion. 4. Use Calms Processing Routine. 5. Not Use Missing Data Processing Routine.
 6. Default Wind Profile Exponents. 7. Default Vertical Potential Temperature Gradients. 8. "Upper Bound" Values for Supersquat Buildings. 9. No Exponential Decay for URBAN/Non-SO2 **Model Accepts Receptors on ELEV Terrain. **Model Assumes No FLAGPOLE Receptor Heights. **Model Calculates 1 Short Term Average(s) of: 24-HR and Calculates ANNUAL Averages **This Run Includes: 1 Source Group(s); and 1 Source(s); 856 Receptor(s) **The Model Assumes A Pollutant Type of: PM-10 **Model Set To Continue RUNning After the Setup Testing. **Output Options Selected: Model Outputs Tables of ANNUAL Averages by Receptor Model Outputs Tables of Highest Short Term Values by Receptor (RECTABLE Keyword) Model Outputs External File(s) of High Values for Plotting (PLOTFILE Keyword) **NOTE: The Following Flags May Appear Following CONC Values: c for Calm Hours m for Missing Hours b for Both Calm and Missing Hours **Misc. Inputs: Anem. Hgt. (m) = 10.00 ; Decay Coef. = 0.000
Emission Units = GRAMS/SEC ; Rot. Angle = 0.0 ; Emission Rate Unit Factor = 0.10000E+07 Output Units = MICROGRAMS/M**3 **Approximate Storage Requirements of Model = 1.3 MB of RAM. **Input Runstream File: SRTGEN.INP **Output Print File: SRTGEN.OUT **Detailed Error/Message File: SRTGEN.err **File for Saving Result Arrays: SRTGEN.sal **This Run is Part of a Multi-year Run. NOTE: PERIOD Results Are for Current Period Only. Short Term Results Are Cumulative Across All Years Processed.

*** ISCST3 - VERSION	02035 ***	*** C:\AERMOD\SRT ***	Generator\SRTGEN\SRTGEN.isc		* * *	05/23/12 09:29:23
**MODELOPTs: CONC	URBAN ELEV	DFAULT		MULTYR		PAGE 2

*** POINT SOURCE DATA ***

NUMB SOURCE PAR ID CAT		E X (METERS)	Y (METERS)	BASE ELEV. (METERS)	STACK HEIGHT (METERS)	STACK TEMP. (DEG.K)	STACK EXIT VEL. (M/SEC)	STACK DIAMETER (METERS)	BUILDING EXISTS	EMISSION RATE SCALAR VARY BY
	0.10000E+01		4270242.0	4.9	2.36	666.37	45 30	0 10	YES	

*** ISCST3 - VE	RSION 02035 ***	*** C:\AERMOD\SRT G	enerator\SRTGEN\SRTGEN.isc	***	05/23/12 09:29:23
**MODELOPTs: CONC	URBAN ELEV	DFAULT	MULT	YR	PAGE 3

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID

SOURCE IDs

ALL STCK1 ,

*** ISCST3 - VERSI	ON 02035 *** *** C	:\AERMOD\SRT Ge	nerator\SRTGEN\SRTGEN.isc	* * *	05/23/12 09:29:23
**MODELOPTs: CONC	URBAN ELEV	DFAULT	MULTYR		PAGE 4

*** DIRECTION SPECIFIC BUILDING DIMENSIONS ***

SOURCE	ID: S	STCK1															
IFV	BH	BW WAK	IFV	BH	BW WAK	IFV	BH	BW WAK	IFV	BH	BW WAK	IFV	BH	BW WAK	IFV	BH	BW WAK
1	4.6,	38.1, 0	2	4.6,	35.8, 0	3	4.6,	40.2, 0	4	4.6,	43.3, 0	5	4.6,	45.2, 0	6	4.6,	45.6, 0
7	4.6,	44.7, 0	8	4.6,	42.4, 0	9	4.6,	38.8, 0	10	4.6,	34.0, 0	11	4.6,	29.9, 0	12	4.6,	35.2, 0
13	4.6,	39.5, 0	14	4.6,	42.6, 0	15	4.6,	44.4, 0	16	4.6,	44.8, 0	17	4.6,	43.9, 0	18	4.6,	41.6, 0
19	4.6,	38.1, 0	20	4.6,	35.8, 0	21	4.6,	40.2, 0	22	4.6,	43.3, 0	23	4.6,	45.2, 0	24	4.6,	45.6, 0
25	4.6,	44.7, 0	26	4.6,	42.4, 0	27	4.6,	38.8, 0	28	4.6,	34.0, 0	29	4.6,	29.9, 0	30	4.6,	35.2, 0
31	4.6,	39.5, 0	32	4.6,	42.6, 0	33	4.6,	44.4, 0	34	4.6,	44.8, 0	35	4.6,	43.9, 0	36	4.6,	41.6, 0

*** ISCST3 - V **MODELOPTs:		* * *	*	\SRT Generat	cor\SRTGEN\S	SRTGEN.isc			* * * * * *	05/23/12 09:29:23 PAGE 5
CONC	UR	BAN ELEV	DFAUL	Г			MULTYR			
	*** GRIDDED RECEPTOR NETWORK SUMMARY ***									
		***]	NETWORK ID:	UCART1 ;	NETWORK TY	PE: GRIDCAN	RT ***			
			*** X-C	ORDINATES (OF GRID ***					
				(METERS)						
631123 1	631133 1	631143 1	631153 1	631163.1,	631173 1	631183 1	631193 1	631203 1	631213 1	
				631263.1,						
631323.1,	631333.1,	631343.1,	631353.1,	631363.1,	631373.1,	631383.1,	631393.1,	631403.1,	631413.1,	
			*** V-C	OORDINATES ()F GRID ***					
			1 00	(METERS)	on GREE					
				4270153.0,						
				4270253.0, 4270353.0,					42/0303.0,	
12/0313.07	12,0020.07	12/03/07/	12,0010.07	12,0000,00,	12,000.07	12,00,00,	12,0000.07			

*** ISCST3 -			05/23/12 09:29:23						
**MODELOPTs: CONC	URBAN	I ELEV	DFAULT			MULTYR			PAGE 6
		*** NETWO	RK ID: UCART1	; NETWORK	TYPE: GRIDCA	RT ***			
* ELEVATION HEIGHTS IN METERS *									
Y-COORD (METERS)	631123 13	631133 12	631143 13	X-COORD 631153.12	(METERS) 631163.12	631173 13	631183.13	631193.13	631203.12
(METERS) 									
4270383.00	5.18	5.18		5.18	5.18			5.18	5.18
4270373.00	5.18 5.18 5.18 5.18	5.18	5.18	5.18	5.18	5.18	5.18	5.18	5.18
4270363.00	5.18	5.18	5.18	5 18	5 18	5.18	5.18	5.18	5.18
4270353.00	5.18	5.18	5.18		5.18	5.18	5.18	5.18	5.18
4270343.00	5.18	5.18	5.18		5.18	5.18	5.18	5.18	5.18
4270333.00	5.18	5.18 5.18	5.18	5.18	5.18	5.18	5.18 5.18	5.18	5.18
4270323.00	5.18	5.18	5.18	5.18	5.18	5.18	5.18	5.18	5.18
4270313.00	5.18	5.18		5.18	5.18	5.18	5.18		5.18
4270303.00	5.18	5.18	5.18	5.18	5.18	5.18	4.88	5.18	5.18
4270293.00	5.18	5.18 5.18	5.18	5 1 8	5 1 8	4.88	4 88	4 88	4.88
4270283.00	5.18			5.18	5.18	4.88	4.88	4.88	4.88
4270273.00	4.88	5.18	5.18		4.88	4.88	4.88	4.88	4.88
4270263.00	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88
4270253.00	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88
4270243.00	4.88	4.88	4.88		4.88	4.88	4.88		4.88
4270233.00	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88
4270223.00	4.88	4.88 4.88	4.88	4.88	4.88	4.88	4.88 4.88	4.88	4.88
4270213.00	4.88			4.88	4.88	4.88	4.88	4.88	4.88
4270203.00	4.88	4.88		4.88	4.88	4.88	4.88		4.88
4270193.00	4.88	4.88	4.88	4.88	4.88	4.88	4.88		4.88
4270183.00	4.57	4.88	4.88	4.57	4.88	4.88	4.57		4.88
4270173.00	4.57	4.57		4.57	4.57		4.57		4.57
4270163.00	4.57	4.57	4.57		4.57	4.57	4.57		4.57
4270153.00	4.57	4.57 4.57	4.57	4.57	4.57	4.57	4.57	4.57	
4270143.00	4.57			4.57	4.57	4.57	4.57	4.57	
4270133.00	4.57	4.57		4.57	4.57	4.57	4.57	4.57	4.57
4270123.00	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88
4270113.00	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88

*** ISCST3 -		* * * * * *	05/23/12 09:29:23						
**MODELOPTs: CONC	URBAN	I ELEV	DFAULT			MULTYR			PAGE 7
		*** NETWC	RK ID: UCART1	; NETWORK	TYPE: GRIDCA	RT ***			
* ELEVATION HEIGHTS IN METERS *									
Y-COORD				X-COORD	(METERS)				
	631213.12	631223.12	631233.12	631243.13	631253.13	631263.13	631273.12	631283.12	631293.12
4270383.00	5.18	5.18	5.18	5.18	5.18	5.18	5.18	5.18	5.18
4270373.00	5.18	5.18	5.18	5.18	5.18	5.18	5.18	5.18	5.18
4270363.00	5.18	5.18	5.18	5.18	5.18 5.18	5.18	5 18	5 18	
4270353.00	5.18 5.18 5.18	5.18 5.18 5.18	5.18	5.18	5.18	5.18	5.18	5.18	5.18
4270343.00	5.18	5.18	5.18		5.18	5.18	5.18	5.18	
4270333.00	5.18	5.18 5.18	5.18	5.18	5.18	5.18	5.18 5.18	5.18	
4270323.00	5.18	5.18	5.18	5.18	5.18	5.18			
4270313.00	5.18	5.18	5.18		5.18	5.18	5.18		
4270303.00	4.88	5.18	5.18 4.88 4.88	4.88	5.18 4.88 4.88	5.18	4.88	5.18	
4270293.00	4.88	4.88	4.88	4.88	4.88	4.88	4 88	4 88	
4270283.00	4.88	4.88	4.88	4.88	4.88	4.88		4.88	
4270273.00	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88	
4270263.00	4.88	4.88 4.88	4.88	4.88	4.88	4.88	4.88	4.88	
4270253.00	4.88	4.88	4.88	4.88	4.88 4.88 4.88	4.88	4.00	4.00	
4270243.00	4.88	4.88	4.88	4.88	4.88	4.88			
4270233.00	4.88	4.88 4.88 4.88	4.88	4.88	4.88	4.88	4.88	4.88	
4270223.00	4.88	4.88	4.88	4.88	4.88 4.88	4 88	4 88	4.88	
4270213.00	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88	
4270203.00	4.88	4.88	4.88	4.88	4.88	4.88			
4270193.00	4.88	4.88	4.88	4.88	4.88 4.88 4.57	4.88	4.88	4.88	
4270183.00	4.57	4.88	4.88	4.57	4.88	4.88	4.57		
4270173.00	4.57	4.57		4.57	4.57	4.57	4.57		
4270163.00	4.57	4.57		4.57	4.57	4.57	4.57		
4270153.00	4.57	4.57 4.57	4.57	4.57	4.57 4.57	4 57	4.57	4.57	
4270143.00	4.57							4.57	
4270133.00	4.57	4.57			4.57				
4270123.00	4.88	4.88	4.88	4.88	4.57	4.57	4.57	4.57	
4270113.00	4.88	4.88	4.88	4.88	4.88	4.57	4.57	4.57	4.57

*** ISCST3 - VERSION 02035 *** *** C:\AERMOD\SRT Generator\SRTGEN\SRTGEN.isc ***									05/23/12 09:29:23
**MODELOPTs: CONC	URBAN	I ELEV	DFAULT			MULTYR			PAGE 8
*** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART ***									
	* ELEVATION HEIGHTS IN METERS *								
Y-COORD X-COORD (METERS)									
	631303.12	631313.13	631323.13			631353.12	631363.12	631373.12	631383.13
4270383.00	5.18	5.18	5.18	F 10	5.18	5.18	5.18	F 10	5.18
4270373.00	5.18			5.18		5.18	5.18		5.18
4270363.00	5.18	5.18	5.10	5.10	5.10		5.10	5.18	
4270353.00	5.18 5.18	5.10	5.18 5.18	5.10	5.18 5.18	5.18	5.18 5.18	5.18	
4270343.00	5.18		5.18			5.18	5.18	5.18	5.18
4270333.00		5.18	5 18			5.18	4 88	5.18	5.18
4270323.00	5.18 5.18	5.18	5.18 4.88	4.88	5.18 4.88	4.88	4.88 4.88	4.88	4.88
4270313.00	5.18	5.18	4.88	4.88	4 88	4.88	4.88	4.88	4.88
4270303.00	4.88			4.88		4.88	4.88		4.88
4270293.00	4 88	4 88	4 88	4 88	4 88		4 88		
4270283.00	4.88 4.88	4 88	4.88 4.88	4 88	4.88 4.88	4.88	4.88 4.88	4.88	
4270273.00		4.88	4 88	4 88	4.88	4.88	4.88		
4270263.00		4.88		4 88	4 88	4.88	4.88		
4270253.00	4.88	4.88	4.88	4.88 4.88 4.88	4.88	4.88	4 88	4.88	4.88
4270243.00	4.88 4.88	4.88 4.88	4.88	4.88	4.88	4.88	4.88 4.88	4.88	
4270233.00	4.88			4.88	4.88	4.88	4.88		4.88
4270223.00	4.88	4.88	4.88	4.88	4.88	4.88	4.88		
4270213.00	4.88	4.88	4.88 4.88	4.88	4.88 4.88	4.88	4.88 4.88	4.88	
4270203.00	4.88	4.88	4.88	4.88	4.88	4.88	4.88	4.88	
4270193.00	4.88	4.88	4.88	4.88	4.88	4.88	4.88		4.88
4270183.00	4.57	4.88	4.88	4.57	4.88	4.88	4.88	4.88	4.88
4270173.00	4.57 4.57	4.57	4.88 4.57	4.57	4.88 4.57	4.88	4.88 4.88	4.88	4.88
4270163.00	4.57	4.57		4.57	4 57	4 88	4.88		4.88
4270153.00	4.57	4.57	4.57	4.57	4.57	4.57	4.57	4.88	4.88
4270143.00	4.57	4.57	4.57 4.57	4.57	4.57	4.57	4.57	4.57	4.57
4270133.00	4.57	4.57	4.57	4.57	4.57	4.57	4.57	4.57	4.57
4270123.00		4.57	4.57	4.57	4.57	4.57	4.57	4.57	4.57
	4.57	4.57	4.57	4.57	4.57	4.57		4.57	

*** ISCST3 -	VERSION 02035 *	** *** C:/	AERMOD\SRT Gene	rator\SRTGEN\SRTGEN.isc		* * *	05/23/12 09:29:23
**MODELOPTs:							PAGE 9
CONC	URBAN	ELEV	DFAULT		MULTYR		11102 9
		*** NETWC	DRK ID: UCART1	; NETWORK TYPE: GRIDCART	* * *		
				N HEIGHTS IN METERS *			
Y-COORD				X-COORD (METERS)			
(METERS)	631393.13	631403.13	631413.12				
4270383.00	5.18	5.18	5.18				
4270373.00	5.18	5.18	5.18				
4270363.00	5.18	5.18	5.18				
4270353.00	5.18	5.18	5.18				
4270343.00	5.18	5.18	5.18				
4270333.00	4.88	5.18	5.18				
4270323.00	4.88	4.88	4.88				
4270313.00	4.88	4.88	4.88				
4270303.00	4.88	4.88	4.88				
4270293.00	4.88	4.88	4.88				
4270283.00	4.88	4.88	4.88				
4270273.00	4.88	4.88	4.88				
4270263.00	4.88	4.88	4.88				
4270253.00	4.88	4.88	4.88				
4270243.00	4.88	4.88	4.88				
4270233.00	4.88	4.88	4.88				
4270223.00	4.88	4.88	4.88				
4270213.00	4.88	4.88	4.88				
4270203.00	4.88	4.88	4.88				
4270193.00	4.88	4.88	4.88				
4270183.00	4.88	4.88	4.88				
4270173.00	4.88	4.88	4.88				
4270163.00	4.88	4.88	4.88				
4270153.00	4.57	4.88	4.88				
4270143.00	4.57	4.57	4.88				
4270133.00	4.57	4.57	4.88				
4270123.00	4.57	4.57	4.57				
4270113.00	4.57	4.57	4.57				

*** ISCST3 -	VERSION	02035	* * *	* * *	C:\AERMOD\SRT	Generator\SRTGEN\	SRTGEN.isc
				* * *			
**MODELOPTe:							

* * *	05/23/12
* * *	09:29:23
	PAGE 10

CONC	URBAN	ELEV	DFAULT		MULTYR	
				CARTESIAN RECEPTORS *** -COORD, ZELEV, ZFLAG) (METERS)		
(631288.5, 4 (631237.0, 4 (631193.1, 4 (631180.1, 4 (631189.5, 4 (631251.8, 4	1270267.0, 1270280.5, 1270296.5, 1270249.5, 1270249.5, 1270208.5,	4.9, 4.9, 4.9, 4.9, 4.9, 4.9,	0.0); 0.0); 0.0); 0.0); 0.0); 0.0);	<pre>(631266.8, 4270255.0, (631228.9, 4270269.0, (631194.0, 4270293.0, (631204.4, 4270243.5, (631187.2, 4270220.5, (631272.6, 4270220.0,</pre>	4.9, 4.9, 4.9, 4.9, 4.9, 4.9, 4.9,	0.0); 0.0); 0.0); 0.0); 0.0); 0.0);
(631219.2, 4 (631223.6, 4		4.9, 4.9,	0.0); 0.0);	(631219.4, 4270241.5, (631223.9, 4270242.0,	4.9, 4.9,	0.0); 0.0);

*** ISCST3 - \	VERSION 02035 ***	*** C:\AERMOD\SRT	Generator\SRTGEN\SRTGEN.isc ***	0	5/23/	12	
		* * *	***	0	9:29:	23	
**MODELOPTs:				P	AGE	11	
CONC	URBAN ELEV	DFAULT	MULTYR				

 \star Source-receptor combinations for which calculations may not be performed \star less than 1.0 meter or 3*ZLB in distance, or within open pit source

SOURCE ID	– – RECEPTOR I XR (METERS)	LOCATION YR (METERS)	DISTANCE (METERS)
STCK1	631213.1	4270233.0	12.08
STCK1	631223.1	4270233.0	9.21
STCK1	631213.1	4270243.0	8.12
STCK1	631223.1	4270243.0	2.18
STCK1	631233.1	4270243.0	11.98
STCK1	631213.1	4270253.0	13.64
STCK1	631223.1	4270253.0	11.17
STCK1	631219.2	4270243.5	2.45
STCK1	631219.4	4270241.5	1.82
STCK1	631223.6	4270240.0	3.15
STCK1	631223.9	4270242.0	2.75

*** ISCST3 -	VERSION 02035 ***	*** C:\AERMOD\SRT	Generator\SRTGEN\SRTGEN.isc		* * *	05/23/12
		* * *			* * *	09:29:23
**MODELOPTs:						PAGE 12
CONC	URBAN ELEV	DFAULT	Μ	ULTYR		

*** METEOROLOGICAL DAYS SELECTED FOR PROCESSING *** (1=YES; 0=NO)

1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
	1111111111 1111111111 11111111111111111	
	11111111111 1111111111 1111111111111111	
1 1 1 1 1 1 1 1 1 1	11111111111 1111111111 1111111111111111	1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1	

NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE.

*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES *** (METERS/SEC)

1.54, 3.09, 5.14, 8.23, 10.80,

*** WIND PROFILE EXPONENTS ***

STABILITY		WINI	SPEED CATEGORY	<i>C</i>		
CATEGORY	1	2	3	4	5	6
A	.15000E+00	.15000E+00	.15000E+00	.15000E+00	.15000E+00	.15000E+00
В	.15000E+00	.15000E+00	.15000E+00	.15000E+00	.15000E+00	.15000E+00
C	.20000E+00	.20000E+00	.20000E+00	.20000E+00	.20000E+00	.20000E+00
D	.25000E+00	.25000E+00	.25000E+00	.25000E+00	.25000E+00	.25000E+00
E	.30000E+00	.30000E+00	.30000E+00	.30000E+00	.30000E+00	.30000E+00
F	.30000E+00	.30000E+00	.30000E+00	.30000E+00	.30000E+00	.30000E+00

*** VERTICAL POTENTIAL TEMPERATURE GRADIENTS *** (DEGREES KELVIN PER METER)

STABILITY		WINI	SPEED CATEGORY	Y		
CATEGORY	1	2	3	4	5	6
A	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
В	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
C	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
D	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
E	.20000E-01	.20000E-01	.20000E-01	.20000E-01	.20000E-01	.20000E-01
F	.35000E-01	.35000E-01	.35000E-01	.35000E-01	.35000E-01	.35000E-01

*** ISCST3 - VERSION 02	2035 *** ***		erator\SRTGEN\	SRTGEN.isc		* * * * * *	05/23/12 09:29:23
	URBAN ELEV	DFAULT		ľ	MULTYR		PAGE 13
**:	* THE FIRST 24	HOURS OF METEOROLO	OGICAL DATA **	*			
FILE:\\SRTGH FORMAT: (412,2F9.4	EN~1\MnM\SACOAK		f7 2)				
SURFACE STATION NO	.: 23232	UPPEI	R AIR STATION 1	NO.: 23230			
NAMI	E: SACRAMENTO/E	XECUTIVE_ARPT	Nž	AME: OAKLAND/WS	D_AP		
YEAI	R: 1985		Y.	EAR: 1985			
FLOW SPEN		MIXING HEIGHT (M)			DDE PRATE		
YR MN DY HR VECTOR (M/S	- , , ,		(M/S) (M		(mm/HR)		
85 01 01 01 271.0 1.9	54 274.3 7	380.8 190.0	0.0000	0.0 0.0000 0	0.00		
85 01 01 02 268.0 0.0	00 274.3 7	352.8 190.0	0.0000	0.0 0.0000 0	0.00		
85 01 01 03 274.0 0.0	00 273.1 7	324.7 190.0	0.0000	0.0 0.0000 0	0.00		
85 01 01 04 273.0 0.0	00 273.7 7	296.7 190.0	0.0000	0.0 0.0000 0	0.00		
85 01 01 05 273.0 0.0	00 273.1 7	268.6 190.0	0.0000	0.0 0.0000 0	0.00		
85 01 01 06 272.0 0.0	00 272.6 7	240.5 190.0	0.0000	0.0 0.0000 0	0.00		
85 01 01 07 275.0 0.0	00 272.6 7	212.5 190.0	0.0000	0.0 0.0000 0	0.00		
85 01 01 08 273.0 0.0	00 271.5 6	1.3 176.1	0.0000	0.0 0.0000 0	0.00		
85 01 01 09 267.0 0.0	00 274.3 5	3.7 149.4	0.0000	0.0 0.0000 0	0.00		
85 01 01 10 271.0 0.0	00 277.6 4	6.2 122.7	0.0000	0.0 0.0000 0	0.00		
85 01 01 11 274.0 0.0	00 280.4 3	8.6 96.0	0.0000	0.0 0.0000 0	0.00		
85 01 01 12 316.0 1.5	54 280.9 2	11.1 69.4	0.0000	0.0 0.0000 0	0.00		
85 01 01 13 323.0 0.0	00 282.0 2	13.5 42.7	0.0000	0.0 0.0000 0	0.00		
85 01 01 14 319.0 0.0	00 283.2 2	16.0 16.0	0.0000	0.0 0.0000 0	0.00		
85 01 01 15 322.0 0.0	00 283.2 2	16.0 16.0	0.0000	0.0 0.0000 0	0.00		
85 01 01 16 334.0 2.9	57 283.2 3	16.0 16.0	0.0000	0.0 0.0000 0	0.00		
85 01 01 17 321.0 2.0	06 280.9 4	19.3 19.3	0.0000	0.0 0.0000 0	0.00		
85 01 01 18 297.0 1.5	54 280.4 5	39.3 29.5	0.0000	0.0 0.0000 0	0.00		
85 01 01 19 304.0 0.0	00 278.7 6	59.4 41.1	0.0000	0.0 0.0000 0	0.00		
85 01 01 20 297.0 0.0	00 277.0 7	79.4 52.7	0.0000	0.0 0.0000 0	0.00		
85 01 01 21 300.0 0.0	00 277.0 7	99.4 64.2	0.0000	0.0 0.0000 0	0.00		
85 01 01 22 302.0 0.0	00 276.5 7	119.5 75.8	0.0000	0.0 0.0000 0	0.00		
	00 275.9 7	139.5 87.4	0.0000		0.00		
85 01 01 24 300.0 0.0	00 274.3 7	159.5 99.0	0.0000	0.0 0.0000 0	0.00		

*** NOTES:	STABILITY CLASS 1=A, 2=B, 3=C, 4=D, 5=E AND 6=F.	
	FLOW VECTOR IS DIRECTION TOWARD WHICH WIND IS BLOWING.	

*** ISCST3 -	VERSION 02035	*** *** C:\ ***	AERMOD\SRT Ge	nerator\SRTGE	N\SRTGEN.isc			* * * * * *	05/23/12 09:29:23
**MODELOPTs:									PAGE 14
CONC	URBAN	N ELEV	DFAULT			MULTYR			
		*** THE ANNUA INCLUDING	L (5 YRS) SOURCE(S):	AVERAGE CONCE STCK1 ,	NTRATION VA	ALUES FOR SOUR	CE GROUP: ALI	. ***	
		*** NETW	ORK ID: UCART	1 ; NETWOR	K TYPE: GRIDO	CART ***			
		* *	CONC OF PM-10	IN MICROG	RAMS/M**3		**		
Y-COORD				X-COORD	(METERS)				
(METERS)	631123.13	631133.12	631143.13	631153.12	631163.12	631173.13	631183.13	631193.13	631203.12
4270383.00	19.24563	20.01152	20.66776	21.41288	22.36174	23.52771	25.00142	26.94617	29.26492
4270373.00	20.61457	21.76975	22.66656	23.57037	24.71159	26.10408	27.79869	30.03836	32.84721
4270363.00	21.75191	23.56910	25.01451	26.23016	27.54342	29.15986	31.13432	33.73019	37.14933
4270353.00	22.47524	25.28109	27.56614	29.32004	30.92903	32.82940	35.24876	38.40043	42.66179
4270343.00	22.67194	26.45218	29.96852	32.76115	35.13163	37.64240	40.64803	44.42871	49.67782
4270333.00	22.30786	26.74626	31.70364	36.55229	40.45935	43.78532	47.50120	52.15176	58.66154
4270323.00	21.78159	26.23988	32.57670	39.86513	46.46180	51.59414	56.41614	62.36857	70.59346
4270313.00	21.47609	25.82659	32.30082	41.44643	52.02537	61.26442	68.47959	76.25610	86.80898
4270303.00	21.14317	25.74665	31.84565	41.07458	55.11175	71.49967	82.08266	95.57589	109.62195
4270293.00	19.50038	24.88911	31.64699	40.67822	54.80833	75.09104	100.46263	119.11073	138.08505
4270283.00	16.00461	21.40558	29.13532	39.92644	54.38525	74.13225	112.93343	156.26971	186.96649
4270273.00	11.78822	16.09204	22.57931	32.15167	48.45840	72.59721	110.35254	188.00795	270.11667
4270263.00	9.07264	11.49317	15.36842	21.83582	33.55887	56.54791	101.19960	182.96170	386.33148
4270253.00	7.67134	9.34264	11.82453	15.52460	21.45096	32.03031	54.71558	125.17185	359.66028
4270243.00	6.77098	8.11634	10.05899	12.80024	16.82541	23.02381	33.49105	58.34590	111.29714
4270233.00	5.45217	6.33752	7.54934	9.11111	11.12938	13.71713	17.06882	24.75736	43.84377
4270223.00	4.05524	4.57675	5.28861	6.23020	7.53890	9.48792	12.68131	19.88039	34.65886
4270213.00	3.23193	3.67462	4.30216	5.19718	6.51048	8.55759	11.62813	16.16556	25.77909
4270203.00	2.85441	3.28647	3.89233	4.78943	6.05111	7.71003	10.00415	13.76316	19.98703
4270193.00	2.65217	3.08602	3.67555	4.46089	5.44141	6.75262	8.71541	11.60730	16.18271
4270183.00	2.47613	2.93539	3.43859	3.94476	4.85114	5.99615	7.35877	9.77229	13.39624
4270173.00	2.36594	2.69720	3.09225	3.59463	4.27903	5.20144	6.42274	8.09598	11.06695
4270163.00	2.25306	2.50624	2.85040	3.30571	3.89585	4.64813	5.61870	6.99880	9.52283
4270153.00	2.12803	2.35306	2.64648	3.04947	3.55486	4.18316	4.97680	6.15616	8.28272
4270143.00	2.00494	2.21528	2.48534	2.82587	3.25550	3.78352	4.46074	5.50475	7.29772
4270133.00	1.89055	2.08884	2.33765	2.64279	3.00770	3.44630	4.03943	4.96884	6.47933
4270123.00	1.81609	2.00416	2.23701	2.51534	2.84035	3.23344	3.76841	4.59406	5.87567
4270113.00	1.73081	1.90331	2.11361	2.35852	2.64594	3.00061	3.48961	4.22745	5.31948

*** ISCST3 -	VERSION 02035 *	*** *** C:\ ***	AERMOD\SRT Ge	nerator\SRTGE	N\SRTGEN.isc			* * * * * *	05/23/12 09:29:23
**MODELOPTs:									PAGE 15
CONC	URBAN	1 ELEV	DFAULT			MULTYR			
		*** THE ANNUA INCLUDING	L (5 YRS) SOURCE(S):	AVERAGE CONCE STCK1 ,	NTRATION VA	LUES FOR SOUR	CE GROUP: ALL	***	
		*** NETW	ORK ID: UCART	1 ; NETWOR	K TYPE: GRIDC	CART ***			
		* *	CONC OF PM-10	IN MICROG	RAMS/M**3		* *		
Y-COORD				X-COORD	(METERS)				
(METERS)	631213.12	631223.12	631233.12	631243.13	631253.13	631263.13	631273.12	631283.12	631293.12
4050000 00 1	21 15055	21 55006	20.20502	00 50615	00 55060	0.0.001.0	06 50501	05 55100	04 601 50
4270383.00 4270373.00	31.15066 35.26792	31.55906 35.83861	30.38723 34.39027	28.70617 32.42978	27.55360 31.23632	26.99819 30.66334	26.52731 29.98239	25.77123 28.81811	
4270373.00	40.30160	41.11054	34.39027	32.42978	31.23632	30.86334	34.09512	32.34486	30.00108
4270353.00	46.87183	48.03011	45.64983	42.93853	41.66507	40.69947	38.97374	36.32924	33.00986
4270353.00	55.34255	57.02519	53.85012	50.68046	49.34166	47.77889	44.85894	40.74786	36.03391
4270343.00	66.41753	68.93723	64.60217	60.95860	59.37746	56.58571	51.76162	45.57038	38.87630
4270333.00	81.44275	85.36143	79.24442	75.10309	72.68259	67.44710	59.49137	50.26232	
4270323.00	102.18828	108.55608	99.73820	95.13109	90.43250	80.56834	67.49310	54.02400	42.07592
4270303.00	127.89854	142.68948	129.74484	121.66605	113.75592	95.25648	73.22225	55.67827	
4270293.00	169.43700	189.27042	171.67946	163.52261	139.78645	106.76572	76.17338	53.08942	
4270293.00	233.81027	273.18533	248.18184	224.54732	169.08072	112.62122	72.24483	46.88064	
4270273.00	347.19281	432.00104	391.42505	302.87811	182.83145	102.77582	59.75492	37.04492	
4270263.00	569.14862	765.54608	650.21008	346.15933	152.42081	75.10027	42.84301	27.69970	
4270253.00	0.00000	0.00000	797.58807	228.85869	91.56482	50.53944	33.33852	23.91617	
4270243.00	0.00000	0.00000	0.00000	151.92191	79.40849	48.80326	33.74484	24.63557	
4270233.00	0.00000	0.00000	509.20905	203.21277	93.65752	54.22840	36.23917	25.97372	
4270223.00	71.84821	261.26028	399.06418	224.16037	119.56443	69.93773	44.26641	30.20029	21.88507
4270213.00	48.46030	128.74434	207.33322	186.59915	118.05991	75.80153	51.22152	35.52425	25.50784
4270203.00	35.01928	74.02956	115.85715	126.82497	105.17073	73.14711	51.46710	37.70612	
4270193.00	27.40749	49.43710	72.81001	85.22756	81.93749	66.88521	49.54057	37.01475	28.54303
4270183.00	21.17824	35.25817	49.39286	58.08730	61.16433	56.09572	45.26080	35.71262	
4270173.00	17.14940	25.82211	34.82710	42.11759	45.24477	44.21316	39.76486	33.14640	26.65241
4270163.00	14.09776	20.07378	26.22133	31.59074	34.75769	35.25685	33.57821	30.00841	25.39142
4270153.00	11.76409	16.04798	20.42747	24.42766	27.24654	28.36349	27.95965	26.25713	23.44435
4270143.00	9.99654	13.18051	16.40577	19.42086	21.78733	23.08295	23.28703	22.58125	21.07966
4270133.00	8.60763	11.04037	13.48398	15.79621	17.74039	19.01551	19.52752	19.38291	
4270123.00	7.59776	9.51744	11.43004	13.25524	14.71301	15.89606	16.54031	16.67362	
4270113.00	6.72610	8.26118	9.77599	11.22068	12.53163	13.45140	14.12139	14.40314	14.34819

*** ISCST3 -	VERSION 02035	*** *** C:\ ***	AERMOD\SRT Ge	nerator\SRTGE	N\SRTGEN.isc			* * * * * *	05/23/12 09:29:23	
**MODELOPTs:									PAGE 16	
CONC	URBAN	N ELEV	DFAULT			MULTYR				
		*** THE ANNUA INCLUDING	L (5 YRS) SOURCE(S):	AVERAGE CONCE STCK1 ,	NTRATION VA	ALUES FOR SOUR	CE GROUP: ALI	」 * * *		
		*** NETW	ORK ID: UCART	1 ; NETWOR	K TYPE: GRIDO	CART ***				
** CONC OF PM-10 IN MICROGRAMS/M**3 **										
Y-COORD				X-COORD	(METERS)					
(METERS)	631303.12	631313.13	631323.13	631333.13	631343.12	631353.12	631363.12	631373.12	631383.13	
4070202 00 1	00 16001	21.46631	19.61546	17.70197	15.81355	14.01361	12.35571	10.87043	9.56074	
4270383.00 4270373.00	23.16821 25.17389	22.95464	20.62809	18.30243	16.08206	14.01361	12.24232	10.66389	9.30524	
4270363.00	27.26898	24.36080	21.45687	18.68407	16.14753	13.90644	11.97883	10.33800	8.95100	
4270353.00	29.33636	25.58886	22.00814	18.77942	15.96284	13.56456	11.55369	9.88409	8.49423	
4270343.00	31.15040	26.44772	22.19699	18.53629	15.49641	13.00099	10.96089	9.29523	7.93278	
4270333.00	32.44639	26.74181	21.89424	17.75807	14.72940	12.20365	10.11026	8.57551	7.27341	
4270323.00	32.99435	26.29644	20.80398	16.71257	13.53562	11.08570	9.18330	7.68659	6.49883	
4270313.00	32.42075	25.00340	19.28415	15.23030	12.18739	9.88886	8.15104	6.81798	5.77943	
4270303.00	30.04506	22.51704	17.16527	13.38455	10.64282	8.62544	7.13044	6.00947	5.15143	
4270293.00	26.52990	19.44907	14.66337	11.39031	9.11305	7.47517	6.27289	5.37729	4.69357	
4270283.00	21.93854	16.02967	12.20104	9.63515	7.89016	6.63557	5.70043	4.98792	4.43412	
4270273.00	17.50243	13.18585	10.40231	8.49928	7.17195	6.19216	5.43183	4.82856	4.34608	
4270263.00	14.79271	11.69448	9.58883	8.06297	6.94023	6.08656	5.39735	4.83375	4.37315	
4270253.00	14.20717	11.50489	9.58020	8.12884	7.02569	6.17914	5.48558	4.91392	4.44538	
4270243.00	14.72798	11.90118	9.87468	8.34640	7.18460	6.29763	5.57380	4.98000	4.49642	
4270233.00	15.24899	12.25449	10.11042	8.50463	7.29240	6.36813	5.61850	5.00684	4.51078	
4270223.00	16.61108	13.09124	10.63712	8.84424	7.52039	6.51702	5.71497	5.06838	4.54718	
4270213.00	19.01955	14.71750	11.74173	9.60444	8.06255	6.89934	5.98589	5.26315	4.68622	
4270203.00	21.33523	16.55042	13.13227	10.65254	8.87106	7.51111	6.44935	5.62012	4.96046	
4270193.00	22.43296	17.83477	14.33997	11.72489	9.76380	8.23613	7.03651	6.09718	5.34398	
4270183.00	22.00396	18.18460	14.96628	12.33213	10.51414	8.91854	7.64198	6.61863	5.78310	
4270173.00	21.52409	17.71300	14.85501	12.62239	10.79896	9.39575	8.13706	7.09026	6.21036	
4270163.00	20.95641	17.37385	14.65998	12.55834	10.87237	9.59707	8.42482	7.41892	6.55096	
4270153.00	20.13286	17.01755	14.41869	12.36799	10.76181	9.47998	8.41146	7.56310	6.75140	
4270143.00	18.92120	16.47351	14.15039	12.18316	10.61651	9.36805	8.34711	7.48887	6.74730	
4270133.00	17.36085	15.63714	13.75880	12.00097	10.49024	9.24729	8.23689	7.40761	6.70500	
4270123.00	15.65660	14.55574	13.18890	11.73403	10.35299	9.14473	8.13841	7.30869	6.62028	
4270113.00	14.00264	13.35701	12.43549	11.32070	10.14717	9.03754	8.05679	7.22658	6.53579	
12/0110.00	11.00201	10.00/01	12,15515	11.52070	10.11/1/	2.00/01	0.00079		0.00010	

*** ISCST3 -	VERSION 02035	*** *** C:/	AERMOD\SRT Gene	erator\SRTGEN\SRTGEN.i	sc		* * * * * *	05/23/12 09:29:23
**MODELOPTs: CONC	URBA	N ELEV	DFAULT		MULTYR			PAGE 17
		*** THE ANNUA INCLUDING	L (5 YRS) AV SOURCE(S):	VERAGE CONCENTRATION STCK1 ,	VALUES FOR SOURCE	GROUP: ALL	**	*
		*** NETW	ORK ID: UCART1	; NETWORK TYPE: GR	IDCART ***			
		**	CONC OF PM-10	IN MICROGRAMS/M**3		* *		
Y-COORD				X-COORD (METERS)				
(METERS)	631393.13	631403.13	631413.12					
4270383.00	8.41854	7.42830	6.57171					
4270373.00	8.13995	7.14218	6.28709					
4270363.00	7.78037	6.78883	5.94648					
4270353.00	7.33648	6.36693	5.55093					
4270343.00	6.81020	5.88212	5.11026					
4270333.00	6.17274	5.35460	4.64854					
4270323.00	5.55250	4.79218	4.17820					
4270313.00	4.96511	4.31930	3.80211					
4270303.00	4.48244	3.95325	3.52690					
4270293.00	4.15403	3.72049	3.36400					
4270283.00	3.98504	3.61364	3.30008					
4270273.00	3.94430	3.60262	3.30781					
4270263.00	3.98431	3.64820	3.35485					
4270253.00	4.04943	3.70578	3.40528					
4270243.00	4.08942	3.73700	3.42962					
4270233.00	4.09480	3.73635	3.42496					
4270223.00	4.11265	3.74191	3.42223					
4270213.00	4.20937	3.80830	3.46651					
4270203.00	4.41813	3.96745	3.58759					
4270193.00	4.72575	4.21444	3.78618					
4270183.00	5.09383	4.52156	4.04246					
4270173.00	5.47324	4.85220	4.32840					
4270163.00	5.80527	5.16251	4.61090					
4270153.00	5.98250	5.40628	4.85252					
4270143.00	6.09102	5.50623	5.02093					
4270133.00	6.09544	5.55337	5.10267					
4270123.00	6.03628	5.52626	5.07076					
4270113.00	5.95595	5.46034	5.02699					

*** ISCST3 - VERSION 02035 ***							05/23/12 09:29:23
**MODELOPTs: CONC	URBAN ELE	V DFAULT		MULTYR			PAGE 18
	* * *	THE ANNUAL (5 YRS) INCLUDING SOURCE(S):	AVERAGE CONCENTRATION STCK1 ,	VALUES FOR SOURC	E GROUP: ALL	***	÷
		*** DISCRET	TE CARTESIAN RECEPTOR PO	INTS ***			
		** CONC OF PM-10	IN MICROGRAMS/M**3		**		
X-COORD (M)	Y-COORD (M)	CONC	X-COORD (M)	Y-COORD (M)	CONC		
631288.50	4270248.50	20.63696	631266.75	4270255.00	44.84872		
631237.00	4270267.00	472.59772	631228.88	4270269.00	494.65887		
631193.13	4270280.50	166.38631	631194.00	4270293.00	120.56602		
631180.06	4270296.50	88.45818	631204.44	4270243.50	123.85368		
631189.50	4270249.50	65.69587	631187.19	4270220.50	14.52156		
631251.75	4270208.50	121.12201	631272.63	4270203.00	52.31664		
631219.25	4270243.50	0.00000	631219.44	4270241.50	0.00000		
631223.62	4270240.00	0.00000	631223.94	4270242.00	0.00000		

	**	** C:\AERMOD\SRT Genera **	tor\SRTGEN\SRTGEN.isc		*** 05/23/12 *** 09:29:23
**MODELOPTs CONC	URBAN ELEV	DFAULT		MULTYR	PAGE 19
	*** THE INCI	1ST HIGHEST 24-HR AV UDING SOURCE(S):	ERAGE CONCENTRATION VALU STCK1 ,	UES FOR SOURCE GROUP: A	LL ***
	* * *	NETWORK ID: UCART1	; NETWORK TYPE: GRIDCART	* * *	
		** CONC OF PM-10	IN MICROGRAMS/M**3	* *	
Y-COORD			X-COORD (METERS)		
(METERS)	631123.13	631133.12	631143.13	631153.12	631163.12
4050000 0			110 55424 (00102004)		
4270383.0 4270373.0	115.66459c(85121824) 123.83196c(85121824)	115.76630c(87010524) 127.54250c(87010524)	118.77434c(89123024) 127.80785c(89123024)	116.25751c(89123024) 134.10806c(89123024)	108.77648 (88071224) 123.82243 (88090624)
4270363.0 4270353.0	125.92753c(85121824) 131.73727c(86011524)	134.52110c(85121824) 139.73553c(85121824)	140.02333c(87010524) 150.53389c(87010524)	150.66795c(89123024) 162.24937c(89123024)	147.39432 (88090624) 173.60684c(89123024)
4270353.0	154.05650c(86011524)	152.39348c(86011524)	155.81047c(85121824)	171.37749c(87010524)	198.88268c(89123024)
4270343.0	170.64345c(86011524)	180.40442c(86011524)	179.14449c(86011524)	186.11644 (88112224)	217.67778c(89123024)
4270333.0	176.16203c(86011524)	200.61452c(86011524)	216.59686c(86011524)	218.57266c(87032624)	239.06453 (88112224)
4270313.0	176.88336c(87020224)	207.51447c(86011524)	245.81650c(86011524)	269.88568c(86011524)	278.73126c(87032624)
4270303.0	209.13028c(88020724)	230.52023c(88020724)	255.12961c(86011524)	312.59726c(86011524)	352.09708c(86011524)
4270293.0	203.56572c(87020224)	252.77528c(87020224)	309.92886c(88020724)	337.21823c(87020224)	421.43307c(86011524)
4270283.0	186.07817c(87120424)	238.33345c(87020224)	313.19849c(87020224)	410.40686c(88020724)	491.30566c(87020224)
4270273.0	221.86617c(87120424)	268.01935c(87120424)	301.69986c(87120424)	371.83588c(87020224)	528.73267c(87020224)
4270263.0	190.54744c(87120424)	249.72227c(87120424)	329.02664c(87120424)	428.94562c(87120424)	536.71582c(87120424)
4270253.0	180.74190c(87112024)	214.05844c(87112024)	260.19363c(87112024)	322.17880c(87112024)	440.27689c(87120424)
4270243.0	178.66753c(87112024)	212.25703c(87112024)	263.23932c(87112024)	335.61697c(87112024)	443.10791c(87112024)
4270233.0	160.06557c(89122524)	196.65735c(89122524)	244.78191c(89122524)	307.55753c(89122524)	385.70706c(89122524)
4270223.0	186.30846c(89122524)	219.14073c(89122524)	254.83545c(89122524)	287.48547c(89122524)	302.74149c(89122524)
4270213.0	157.35086c(89122524)	167.80159c(89122524)	170.66519c(89122524)	217.80316c(85012524)	317.85135c(85012524)
4270203.0	104.99907c(85012524)	142.87068c(85012524)	190.74898c(85012524)	241.63425c(85012524)	273.40384c(85012524)
4270193.0	125.86319c(85012524)	153.75278c(85012524)	176.85327c(85012524)	183.00836c(85012524)	157.89339c(85012524)
4270183.0	120.09879c(85012524)	130.28140c(85012524)	127.73425c(85012524)	106.88914c(85012524)	127.29637c(86010324)
4270173.0	97.30391c(85012524)	92.19540c(85012524)	81.34404c(86010324)	95.08205c(86010324)	106.13223c(86101724)
4270163.0	69.48305c(85012524)	67.94771c(87112924)	74.24030c(86010324)	82.46062c(86101724)	88.15723c(86120124)
4270153.0	62.12685c(87112924)	59.49003c(86010324)	65.58447c(86101724)	69.03098c(86120124)	79.83817c(88010324)
4270143.0	48.70646c(86010324)	53.28761c(86101724)	54.96275c(86120124)	59.53421c(86120124)	86.48381c(88010324)
4270133.0	44.11395c(86101724)	45.73802c(86101724)	49.93779c(86120124)	61.62534c(88010324)	87.91444c(88010324)
4270123.0	40.12854c(86101724)	42.78220c(86120124)	47.31112c(88010424)	65.35063c(88010324)	85.37273c(88010324)
4270113.0	37.25209c(86120124)	37.45592c(86120124)	49.64684c(88010424)	65.67046c(88010324)	78.84370c(88010324)

	*	** C:\AERMOD\SRT Genera **	tor\SRTGEN\SRTGEN.isc		*** 05/23/12 *** 09:29:23
**MODELOPTs CONC	: URBAN ELEV	DFAULT		MULTYR	PAGE 20
	*** THE INC	1ST HIGHEST 24-HR AV LUDING SOURCE(S):	ERAGE CONCENTRATION VAL STCK1 ,	UES FOR SOURCE GROUP: A	ALL ***
	**	* NETWORK ID: UCART1	; NETWORK TYPE: GRIDCART	***	
		** CONC OF PM-10	IN MICROGRAMS/M**3	**	
Y-COORD			X-COORD (METERS)		
(METERS)	631173.13	631183.13	631193.13	631203.12	631213.12
4270383.0	113.31576c(89090424)	113.16510c(89090524)	116.07164c(89090524)	132.14815c(88072924)	149.77386c(87071424)
4270373.0	128.83823 (88071224)	121.07368c(89090524)		143.71356 (87081224)	169.52348c(87071424)
4270363.0	146.88243 (88071224)	138.11534 (88071224)		158.89032 (87081224)	193.36177c(87071424)
4270353.0	165.00710 (88090624)	170.93268 (88071224)	173.83549c(89090524)	182.45634 (88101024)	222.38812c(87071424)
4270343.0	205.78412 (88090624)	206.76819 (88071224)	196.85942c(89090524)	210.46185 (88101024)	261.26553 (87081224)
4270333.0	246.59790c(89123024)	237.46336 (88071224)	228.65880 (88071224)	255.27789c(89091824)	313.86066 (87081224)
4270323.0	293.84396c(89123024)	308.82806 (88090624)		317.64005c(89090524)	382.11050 (87081224)
4270313.0	313.71475 (88112224)	392.07623c(89123024)		394.67654c(89090524)	470.90030 (87081224)
4270303.0	378.11038 (88112224)	458.39484c(89123024)		469.33347c(89090524)	565.90594 (87081224)
4270293.0	479.37180c(86011524)	546.04108 (88112224)		665.76666 (88071224)	699.72229c(89091824)
4270283.0	583.38849c(86011524)	703.95111c(86011524)		1027.77063 (88011024)	1050.37122c(89091824)
4270273.0	727.00354c(87020224)	880.09503c(86011524)		1606.58374c(89123024)	1552.58984c(89090524)
4270263.0	653.86084c(87020224)	1084.57129c(87020224)		2248.03271c(87032624)	2897.62573 (88011024)
4270253.0	713.30615c(87120424)	1186.21533c(87120424)		3537.84961c(88020724)	0.00000 (0000000)
4270243.0	611.89185c(87112024)	902.61053c(87112024)		2727.69995c(87112024)	0.00000 (0000000)
4270233.0	467.74094c(89122524)	553.56555c(85110624)		1812.05493c(85012524)	0.00000 (0000000) 1896.95410c(88010324)
4270223.0 4270213.0	349.03250c(85012524) 418.33151c(85012524)	588.86401c(85012524) 418.36279c(85012524)		831.57855c(86101724) 596.71924c(88010324)	1008.52319c(85010324)
4270213.0	247.01457c(85012524)	253.06000c(86010324)		617.08508c(88010324)	616.22876c(85011824)
4270193.0	175.58684c(86010324)	203.01456c(85013124)		460.37347c(88010324)	512.12811 (85112424)
4270183.0	144.55717c(86101724)	173.15196c(88010324)		364.20056c(85011824)	405.99283 (85112424)
4270173.0	113.90550c(86120124)	189.93190c(88010324)		285.01578c(85011824)	327.72495 (85112424)
4270163.0	120.01920c(88010324)	182.01250c(88010324)		225.60039c(85011824)	266.58655 (85112424)
4270153.0	124.89036c(88010324)	159.48465c(88010324)		179.52383c(85011824)	219.55711 (85112424)
4270143.0	119.73714c(88010324)	133.47992c(88010324)		144.63121c(85011824)	183.22652 (85112424)
4270133.0	108.35558c(88010324)	119.46617c(85011824)		118.26810c(85011824)	154.84813 (85112424)
4270123.0	95.56302c(88010324)	108.09995c(85011824)		106.26974 (85112424)	133.00397 (85112424)
4270113.0	85.19504c(85011824)	96.41680c(85011824)	95.38281c(85011824)	95.07253 (85112424)	114.82739 (85112424)

	*	** C:\AERMOD\SRT Genera **	tor\SRTGEN\SRTGEN.isc		*** 05/23/12 *** 09:29:23
**MODELOPTs CONC	: URBAN ELEV	DFAULT		MULTYR	PAGE 21
	*** THE INC		ERAGE CONCENTRATION VAL STCK1 ,	UES FOR SOURCE GROUP: A	LL ***
	**	* NETWORK ID: UCART1	; NETWORK TYPE: GRIDCART	***	
		** CONC OF PM-10	IN MICROGRAMS/M**3	* *	
Y-COORD			X-COORD (METERS)		
(METERS)	631223.12	631233.12	631243.13	631253.13	631263.13
4070202 0 1	155 04014 (05040504)	125 54504 (00000004)	120 04040-(00100004)	106 02000 - (00100004)	122 40585 - (08000404)
4270383.0 4270373.0	157.24214c(87042724) 179.70116c(87071424)	137.54504 (89080824) 157.19745 (89080824)	138.84042c(88102824) 155.73544c(88102824)	126.23890c(88102824) 141.60194c(87080424)	133.42575c(87080424) 149.10724c(87080424)
4270373.0	207.60664c(87071424)	181.20581 (89080824)	175.14610c(88102824)	167.33365c(87080424)	163.98232c(87080424)
4270353.0	242.77480c(87071424)	210.82430 (89080824)	199.31783c(88102824)	198.90567c(87080424)	185.11325c(87082724)
4270343.0	287.96371c(87071424)	249.39142c(88102824)	229.15642c(88102824)	235.70007c(87080424)	222.69034c(87082724)
4270333.0	347.36060c(87071424)	303.26236c(88102824)	269.21558c(87080424)	272.37955c(87080424)	259.77911c(87082724)
4270323.0	427.55188c(87071424)	374.62735c(88102824)	351.04889c(87080424)	331.78888c(87082724)	291.33203c(87082724)
4270313.0	539.33374c(87071424)	470.31064c(88102824)	453.06534c(87080424)	413.25406c(87082724)	331.02997c(87081624)
4270303.0	701.25842c(87071424)	598.71747c(88102824)	539.39661c(89031124)	482.96094c(87082724)	416.75418 (88100724)
4270293.0	909.83081c(87071424)	731.60535c(88102824)	725.57709c(87082724)	572.72333 (88100724)	500.55887 (89060424)
4270283.0	1283.21924c(87071424)	1146.14062c(87080424)	911.51270c(87082724)	710.66211c(89022324)	649.67517c(85100724)
4270273.0	1898.52454c(87071424)	1720.17725c(89031124)	1246.53723 (88100724)	1047.26270c(85100724)	684.52423 (86033024)
4270263.0	3347.92578 (89080824)	2496.70728c(87082724)	1945.06323c(85100724)	1095.05396 (86033024)	590.65143 (86033024)
4270253.0	0.00000 (0000000)	4380.90674c(85100724)	1660.70557 (86033024)	695.72577c(85061024)	451.69922c(85061024)
4270243.0	0.00000 (0000000)	0.00000 (0000000)	1736.76233c(88020924)	874.19299c(89052824)	580.61102c(89052824)
4270233.0	0.00000 (0000000)	3893.37695c(86020624)	2346.73706c(86112224)	955.16431c(86012024)	551.47290c(85121924)
4270223.0	3648.21875c(85122924)	3700.37012c(88111824)	1906.23071c(89021024)	1122.87158c(88122624)	888.20050c(86112224)
4270213.0	1982.44141c(85122924)	1736.34668c(88122824)	1613.48352c(87121724)	1034.21851c(87121724)	717.52240c(86020624)
4270203.0	1181.90527c(85122924)	1180.79175c(85022724)	1326.12036c(88111824)	1041.80420c(87110924)	655.73901c(87121724)
4270193.0	846.73938c(85122924)	812.67706c(85122924)	796.91150c(88111824)	798.05798c(88111824)	690.97131c(87110924)
4270183.0	625.82751c(85122924)	640.99866c(85122924)	536.32416c(85022724)	644.87885c(88111824)	488.48914c(88111824)
4270173.0	469.45889c(85122924)	499.19940c(85122924)	430.93802c(85022724)	440.20602c(88111824)	457.92349c(88111824)
4270163.0	369.65225c(85122924)	401.20593c(85122924)	345.16177c(85111624)	297.96524c(86100324)	372.87064c(88111824)
4270153.0	297.73236c(85122924)	326.88907c(85122924)	286.10211c(85122924)	264.65939c(85022724)	282.31863c(88111824)
4270143.0	244.50943c(85122924)	270.11664c(85122924)	245.46359c(85122924)	226.46011c(85022724)	207.92319c(88111824)
4270133.0	204.16811c(85122924)	226.20752c(85122924)	211.63232c(85122924)	189.46942c(85111624)	174.86479c(86100324)
4270123.0 4270113.0	173.95566c(85122924) 149.05185c(85122924)	192.85922c(85122924)	184.51198c(85122924) 160.85204c(85122924)	163.51685c(85111624) 143.31938c(85122924)	158.87675c(85022724) 142.56744c(85022724)
42/UII3.0	149.051850(85122924)	165.18965c(85122924)	100.852040(85122924)	143.319380(85122924)	142.50/440(85022/24)

*** ISCST3	- VERSION 02035 *** **	* C:\AERMOD\SRT Generat *	cor\SRTGEN\SRTGEN.isc		*** 05/23/12 *** 09:29:23
**MODELOPTs: CONC	URBAN ELEV	DFAULT		MULTYR	PAGE 22
			STCK1 ,	JES FOR SOURCE GROUP: .	ALL ***
*** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ** CONC OF PM-10 IN MICROGRAMS/M**3 **					
			· · · · · · · · · · · · · · · · · · ·		
Y-COORD (METERS)	631273.12	631283.12	X-COORD (METERS) 631293.12	631303.12	631313.13
4270383.0 4270373.0 4270363.0 4270363.0 4270343.0 4270323.0 4270323.0 4270323.0 4270293.0 4270293.0 4270283.0 4270283.0 4270263.0 4270263.0 4270243.0 4270243.0 4270243.0 4270243.0 427023.0 4270193.0 4270193.0 4270163.0 4270163.0 4270153.0 4270123.0	$124.66795c(87082724)\\143.53598c(87082724)\\162.27568c(87082724)\\179.36667c(87082724)\\179.36667c(87082724)\\179.36667c(87082724)\\217.42537c(87081624)\\258.51932(88100724)\\297.44565(88100724)\\366.59641(89060424)\\447.43948c(85100724)\\472.69556(89060424)\\472.69556(8003024)\\314.08365(86033024)\\314.08365(86033024)\\314.08365(86033024)\\314.08365(86033024)\\314.08365(86033024)\\314.08365(86033024)\\314.08365(86033024)\\314.08365(86033024)\\314.08365(86033024)\\314.08365(86033024)\\314.08365(86033024)\\351.26952c(85031224)\\468.29669c(89052824)\\482.45312c(85121924)\\511.94760c(88122624)\\466.13303c(86020624)\\451.28119c(87121724)\\468.98676c(87110924)\\327.47415c(88111824)\\296.45969c(88111824)\\246.56187c(88111824)\\153.48106c(88111824)$	$125.57792c(87082724)\\135.16312c(87082724)\\143.09352c(87082724)\\158.73932c(87081624)\\184.77542c(87081624)\\203.91353(88100724)\\203.91353(88100724)\\281.90076(89060424)\\330.38089c(85100724)\\333.53329c(85100724)\\333.53329c(85100724)\\353.43326(86033024)\\217.73456c(85061024)\\280.65994c(85031224)\\280.65994c(85031224)\\328.51242c(85121924)\\401.76340c(85121924)\\325.50061c(86012024)\\355.50049c(85012024)\\355.50049c(85021024)\\356.78699c(89021024)\\336.78699c(87121724)\\336.78699c(87121724)\\345.92111c(87110924)\\237.43913c(88111824)\\231.23752c(88111824)\\231.23752c(88111824)\\206.58084c(88111824)\\205.8084c(88111824)\\205.8084c(88118$	$110.81979c(87082724)\\124.37256c(87081624)\\145.80768c(87081624)\\157.00439c(87081624)\\162.02399(88100724)\\175.39513(89060424)\\250.18614c(85100724)\\263.83737c(85100724)\\265.24417(86033024)\\255.65913(86033024)\\192.24530(86033024)\\177.83846c(85061024)\\222.95908c(85031224)\\270.31879c(85121924)\\330.10736c(85121924)\\355.94122c(86112224)\\284.23868c(8602624)\\284.23868c(8602624)\\254.96373c(891212724)\\265.08682c(87110924)\\265.08682c(87110924)\\184.32364c(87121724)\\180.44679c(88111824)\\170.17288c(88111824)\\170.17288c(88111824)\\170.17288c(88111824)$	$\begin{array}{c} 117.40308c(87081624)\\ 129.82890c(87081624)\\ 132.51112c(87081624)\\ 130.49059(88100724)\\ 145.74016(89060424)\\ 175.92915(89060424)\\ 196.37602c(85100724)\\ 208.17926c(85100724)\\ 208.17926c(85100724)\\ 209.00749(86033024)\\ 120.31977(86033024)\\ 126.33431(86033024)\\ 139.21266c(85061024)\\ 139.21266c(85061024)\\ 139.21266c(85061024)\\ 223.63492c(85121924)\\ 237.12489c(85121924)\\ 237.12489c(85121924)\\ 257.07581c(86112224)\\ 227.23064c(88122624)\\ 212.44661c(86022624)\\ 197.40245c(89021024)\\ 195.05550c(87121724)\\ 209.51820c(87110924)\\ 188.38342c(87110924)\\ 142.10634c(88111824)\\ \end{array}$	113.68302c(87081624) 111.59357c(87081624) 110.34737c(89022324) 122.64295(89060424) 143.92323(89060424) 158.51605c(85100724) 168.34227c(85100724) 161.37036(86033024) 169.97313(86033024) 158.84810(86033024) 127.23107(86033024) 127.23107(86033024) 122.53866c(85031224) 145.36545c(85031224) 145.36545c(85031224) 186.82788c(85121924) 225.49429c(85121924) 205.25180c(85121924) 234.79227c(86112224) 166.1849c(86112224) 191.05847c(86112224) 184.63438c(86020624) 157.91754c(89021024) 158.14801c(87110924) 169.81070c(87110924) 157.5767c(87110924) 139.46396c(88032524)

	* *	** C:\AERMOD\SRT Genera	tor\SRTGEN\SRTGEN.isc		*** 05/23/12 *** 09:29:23
**MODELOPTs CONC	: URBAN ELEV	DFAULT		MULTYR	PAGE 23
	*** THE INCI	1ST HIGHEST 24-HR AV JUDING SOURCE(S):	ERAGE CONCENTRATION VALU	UES FOR SOURCE GROUP: A	LL ***
	***	NETWORK ID: UCART1	; NETWORK TYPE: GRIDCART	* * *	
		** CONC OF PM-10	IN MICROGRAMS/M**3	**	
Y-COORD			X-COORD (METERS)		
(METERS)	631323.13	631333.13	631343.12	631353.12	631363.12
4050000 0	04 10000 (00001004)	06 55110 (00000000)	01 00005 (0500000)		
4270383.0 4270373.0	94.17928c(87081624) 97.67593c(89022324)	86.77113c(89022324) 89.94245 (89060424)		78.63955c(85100724) 86.88150c(85100724)	77.59526c(85100724) 81.46793c(85100724)
4270363.0	104.45166 (89060424)	101.49516 (89060424)		91.03759c(85100724)	81.10480c(85100724)
4270353.0	119.92432 (89060424)	111.55773c(85100724)		89.86514c(85100724)	78.15477c(88022324)
4270343.0	130.85570c(85100724)	117.00305c(85100724)		87.81061c(86042824)	86.23929c(88022324)
4270333.0	138.96239c(85100724)	112.64336c(85100724)		92.23968c(88022324)	81.93774c(88022324)
4270323.0	132.02637c(85100724)	115.10236 (86033024)		84.73558 (86033024)	78.55924c(89091424)
4270313.0	139.13316 (86033024)	116.77503 (86033024)		83.81009c(89091424)	71.73197c(89091424)
4270303.0	136.69151 (86033024)	108.01331 (86033024)		66.83577 (86033024)	59.32278c(86091924)
4270293.0	119.38943 (86033024)	89.93079 (86033024)		62.32917c(86091924)	56.09055c(86091924)
4270283.0	91.27801 (86033024)	70.58095c(85061024)	67.99585c(85061024)	63.25797c(85061024)	57.33285c(85061024)
4270273.0	95.17271c(85061024)	81.21820c(85061024)	69.27941c(85061024)	65.28762c(85031224)	61.82879c(85031224)
4270263.0	108.23549c(85031224)	95.45609c(85031224)	85.81783c(85031224)	78.19089c(85031224)	71.12868c(85031224)
4270253.0	119.94369c(85031224)	100.36835c(85031224)		75.69118c(85031224)	69.37102c(88020924)
4270243.0	157.78816c(85121924)	134.70488c(85121924)	116.18208c(85121924)	101.18320c(85121924)	88.94434c(85121924)
4270233.0	189.03912c(85121924)	160.17386c(85121924)		118.59965c(85121924)	103.56838c(85121924)
4270223.0	177.87193c(85121924)	154.64398c(85121924)		118.63913c(85121924)	104.86437c(85121924)
4270213.0	148.03946c(85121924)	132.18347c(85121924)		106.32773c(85121924)	95.85216c(85121924)
4270203.0	185.58708c(86112224)	140.47630c(86112224)		91.06967c(85121924)	83.28013c(85121924)
4270193.0	184.61491c(86112224)	165.02103c(86112224)		113.44415c(86112224)	90.26646c(86112224)
4270183.0	155.72795c(88122624)	134.58138c(86112224)		122.07531c(86112224)	107.48424c(86112224)
4270173.0	150.51398c(86020624)	127.00896c(86020624)		102.83163c(86112224)	100.38007c(86112224)
4270163.0	134.96855c(86020624)	127.41140c(86020624)		97.23675c(88122624)	87.47062c(88122624)
4270153.0 4270143.0	128.99150c(89021024)	112.01258c(86020624)		99.61425c(86020624)	86.99668c(86020624) 88.39770c(86020624)
4270143.0	131.17867c(87110924) 140.65196c(87110924)	107.24990c(89021024) 112.08636c(87110924)		94.35355c(86020624) 81.95763c(86020624)	88.39770C(86020624) 82.37077c(86020624)
4270133.0	136.02394c(87110924)	121.88908c(87110924)		77.70512c(86120624)	71.36135c(86020624)
4270123.0	127.64307c(88032524)	119.82666c(87110924)		86.79337c(87110924)	69.37381c(86120624)
-2/0113.0	12/.0130/0(00032324)	110,020000(0/110924)	100.390400(0/110924)	00.195570(01110924)	07.3/3010(00120024)

*** ISCST3	- VERSION 02035 *** **	* C:\AERMOD\SRT Generat *	or\SRTGEN\SRTGEN.isc		*** 05/23/12 *** 09:29:23
**MODELOPTs CONC	: URBAN ELEV	DFAULT		MULTYR	PAGE 24
			STCK1 ,	JES FOR SOURCE GROUP: 2	ALL ***
	*** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ** CONC OF PM-10 IN MICROGRAMS/M**3 **				
Y-COORD			X-COORD (METERS)		
(METERS)	631373.12	631383.13	631393.13	631403.13	631413.12
4270383.0	73.31088c(85100724)	66.92068c(85100724)	59.60941c(85100724)	60.05947c(88022324)	60.46187c(88022324)
4270373.0	73.55747c(85100724)	64.71945c(85100724)	66.14573c(88022324)	65.69697c(88022324)	62.58883c(88022324)
4270363.0	70.37466c(88022324)	72.69283c(88022324)	71.03197c(88022324)	66.40675c(88022324)	59.95843c(88022324)
4270353.0	79.51311c(88022324)	76.18063c(88022324)	69.66122c(88022324)	61.46851c(88022324)	59.09262c(89091424)
4270343.0	80.68851c(88022324)	71.90801c(88022324)	65.90697c(89091424)	63.51194c(89091424)	58.54138c(89091424)
4270333.0	73.34798c(88050224)	71.41352c(89091424)	64.71607c(89091424)	58.45714c(89091424)	52.66731c(86110824)
4270323.0	72.89551c(89091424)	63.93869c(89091424)	56.79725c(86110824)	51.52370c(86110824)	46.01761c(86110824)
4270313.0	61.49591c(86110824)	55.58387c(86110824)	49.29095c(86110824)	44.68906c(86091924)	40.93187c(86091924)
4270303.0	55.05173c(86091924)	50.28723c(86091924)	45.54206c(86091924)	43.86530c(85061024)	42.36747c(85061024)
4270293.0	51.56174c(85061024)	49.97210c(85061024)	47.57804c(85061024)	44.91399c(88020224)	44.75587c(88020224)
4270283.0	52.84169c(88020224)	53.20894c(88020224)	52.64003c(88020224)	51.36348c(88020224)	49.58553c(88020224)
4270273.0	59.33548c(88020224)	57.26414c(88020224)	54.58359c(88020224)	52.92057c(88030224)	52.62317c(88030224)
4270263.0	65.85492c(88030224)	65.21225c(88030224)	63.77973c(88030224)	61.81175c(88030224)	59.50606c(88030224)
4270253.0	66.64757c(88030224) 78.89736c(85121924)	64.21500c(88030224) 70.61124c(85121924)	61.45146c(88030224)	58.82510c(88020924)	56.70552c(88020924)
4270243.0 4270233.0	91.30471c(85121924)	81.24802c(85121924)	63.75109c(85121924) 72.96465c(85121924)	60.54107c(88020924) 66.11277c(85121924)	58.18765c(88020924) 60.41888c(85121924)
4270233.0	93.32912c(85121924)	83.67323c(85121924)	75.58865c(85121924)	68.81229c(85121924)	63.11985c(85121924)
4270213.0	86.77924c(85121924)	78.95667c(85121924)	72.23811c(85121924)	66.48257c(85121924)	61.55642c(85121924)
4270203.0	76.49520c(85121924)	70.58234c(85121924)	65.43582c(85121924)	60.96350c(85121924)	57.08055c(85121924)
4270193.0	73.54391c(86012024)	65.89554c(86012024)	58.40249c(86012024)	54.50666c(85121924)	51.49236c(85121924)
4270183.0	91.73582c(86112224)	76.64555c(86112224)	63.16846c(86112224)	57.28125c(86012024)	52.28837c(86012024)
4270173.0	93.98994c(86112224)	85.07976c(86112224)	75.05215c(86112224)	64.94774c(86112224)	55.66280c(86112224)
4270163.0	82.13687c(88011124)	78.75948c(86112224)	74.76200c(86112224)	69.04865c(86112224)	62.73443c(86112224)
4270153.0	77.94852c(88122624)	72.94279c(88011124)	69.50013c(88011124)	65.95783c(88011124)	61.57274c(86112224)
4270143.0	79.60100c(86020624)	69.73747c(86020624)	64.07142c(88122624)	62.55983c(88011124)	61.26228c(88011124)
4270133.0	78.99408c(86020624)	72.90707c(86020624)	65.35663c(86020624)	57.77227c(88122624)	56.18856c(88011124)
4270123.0	72.69137c(86020624)	70.77725c(86020624)	66.49825c(86020624)	60.76694c(86020624)	54.36300c(86020624)
4270113.0	62.71292c(86020624)	64.42235c(86020624)	63.50059c(86020624)	60.54713c(86020624)	56.22959c(86020624)

*** ISCST3 - VERSION 02035 **MODELOPTs: CONC URBA	*** *** C:\AERMOD\SRT Gen *** N ELEV DFAULT	erator\SRTGEN\SRTGEN.isc MULTYR	***	05/23/12 09:29:23 PAGE 25
		AVERAGE CONCENTRATION VALUES FOR SOURCE STCK1 ,	E GROUP: ALL	***
	*** DISCRETE	CARTESIAN RECEPTOR POINTS ***		
	** CONC OF PM-10	IN MICROGRAMS/M**3	* *	
X-COORD (M) Y-COORD (M) CONC (YYMMDDHH)	X-COORD (M) Y-COORD (M)	CONC (YYMMDDHH)
631288.50 4270248.5 631237.00 4270267.0 631193.13 4270280.5 631180.06 4270296.5 631189.50 4270249.5 631251.75 4270249.5 631219.25 4270243.5 631223.62 4270240.0	0 1833.69519 (85090724) 0 903.66479 (88112224) 0 480.17709 (88112224) 0 1516.19116c (87120424) 0 1263.01379c (87110924) 0 0.00000 (0000000)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.00000 (87080424) 89123024) 87112024)

*** ISCST3	- VERSION 02035 *** **	* C:\AERMOD\SRT Generat	or\SRTGEN\SRTGEN.isc		*** 05/23/12 *** 09:29:23
**MODELOPTs CONC	: URBAN ELEV	DFAULT		MULTYR	PAGE 26
			TCK1 ,	JES FOR SOURCE GROUP: A	NLL ***
	***		NETWORK TYPE: GRIDCART N MICROGRAMS/M**3	***	
Y-COORD			X-COORD (METERS)		
(METERS)	631123.13	631133.12	631143.13	631153.12	631163.12
4270383.0	87.62983c(89123024)	92.61957c(88010924)	95.85355 (88011024)	96.48334 (89092524)	100.49191 (88090624)
4270373.0	99.46391c(88102524)	102.30328c(88010924)	104.77357c(88010924)	107.85259 (89092524)	114.63508 (88071224)
4270363.0	109.90053c(88102524)	109.56252 (88112224)	117.84871c(88010924)	127.36304 (88090624)	125.32018c(89010424)
4270353.0	117.30050c(88102524)	123.63524c(86011524)	129.50316c(88010924)	137.30370c(88010924)	146.00861 (89092524)
4270343.0	111.40325 (85101124)	135.82079c(86012324)	146.25780c(85120524)	156.43048c(85121824)	167.52441c(87010524)
4270333.0	115.85702c(87022724)	131.98076 (85101124)	163.39081c(88030224)	176.17946c(87010524)	193.96532 (88011024)
4270323.0	131.35022c(87112924)	139.66081c(85121524)	165.06293c(86021124)	204.89835c(88030224)	225.28575c(85120524)
4270313.0 4270303.0	163.44510c(87112924) 157.81660 (85102224)	166.85408c(87112924) 197.23105c(86011524)	176.55511c(85121524)	210.50763c(86122524)	267.98849c(86012324)
4270293.0	157.81660 (85102224)	201.75529 (85102224)	222.64604c(87112924) 248.35170c(87112924)	230.18831c(86123024) 305.89420c(87112924)	281.42346c(86122524) 311.54562c(86123024)
4270293.0	149.91478c(87102024)	177.54642c(87102024)	248.351700(87112924) 240.39746 (87030224)	319.12677 (85102224)	425.48294c(86011524)
4270283.0	135.10092c(87012524)	174.74736c(87012524)	224.43323c(87102024)	275.19272c(87102024)	407.83835 (85102224)
4270263.0	127.34959c(89122324)	149.25597c(89122324)	194.62430c(8702024)	259.77438c(87112024)	356.12292c(87012524)
4270253.0	127.47761c(86123024)	154.76112c(86123024)	195.67410c(87120424)	245.87428c(89122324)	310.65225c(89122324)
4270243.0	130.26717c(86012124)	157.91266c(86012124)	195.68768c(86012124)	249.11174c(86012124)	327.80865c(86012124)
4270233.0	112.14029c(86012124)	129.93069c(86012124)	150.91635c(86012124)	183.36101c(87060624)	237.22765c(85020324)
4270223.0	89.83909c(85020324)	109.49484c(85020324)	135.86226c(85020324)	170.25336c(85020324)	199.85217c(85012524)
4270213.0	86.26527c(85020324)	98.36671c(85020324)	107.57424c(85020324)	122.79860c(86011124)	155.06465c(88042624)
4270203.0	65.19919c(85100224)	78.31915c(87060624)	90.11445c(88010124)	114.93464c(88022924)	139.10074c(89022124)
4270193.0	59.74658c(89122524)	74.50289c(85031024)	83.13354c(85031024)	108.66546c(89022124)	136.77518c(87112924)
4270183.0	56.84512c(85031024)	64.94449c(89022124)	87.93748c(87112924)	97.11182c(89022124)	93.88933c(89022124)
4270173.0	59.03784c(87112924)	66.23589c(89022124)	73.94608c(89022124)	68.13083c(89022124)	93.10912c(86120124)
4270163.0	53.42633c(88042624)	58.18826c(89022124)	55.83686c(85013124)	69.13218c(86120124)	73.96727c(86010424)
4270153.0	47.01863c(89022124)	45.74089c(85121324)	53.19429c(86120124)	58.88373c(86010424)	69.76588c(88010424)
4270143.0	41.18106c(85021724)	42.24045c(86092024)	47.52272c(86010324)	53.37951c(88010424)	63.94714c(89122024)
4270133.0	37.78057c(85111224)	40.42582c(86010324)	43.80436c(86010424)	51.81852c(89122024)	58.48456c(87122724)
4270123.0	34.81129c(86010324)	36.22279c(89122024)	42.37867c(89122024)	48.94128c(86101524)	56.59446c(86101524)
4270113.0	31.58706c(86073024)	34.65814c(88010324)	41.39317c(87050724)	45.52168c(85011824)	53.76612c(86101524)

	**	** C:\AERMOD\SRT Generat **	cor\SRTGEN\SRTGEN.isc		*** 05/23/12 *** 09:29:23
**MODELOPTs CONC	: URBAN ELEV	DFAULT		MULTYR	PAGE 27
	*** THE INCI	4TH HIGHEST 24-HR AVI UDING SOURCE(S):	ERAGE CONCENTRATION VAL STCK1 ,	UES FOR SOURCE GROUP: A	LL ***
	* * *	NETWORK ID: UCART1	NETWORK TYPE: GRIDCART	* * * *	
		** CONC OF PM-10	IN MICROGRAMS/M**3	**	
Y-COORD			X-COORD (METERS)		
(METERS)	631173.13	631183.13	631193.13	631203.12	631213.12
4050000 0	05 00400 (00011004)			110 20045 (20101004)	121 20505 (05020104)
4270383.0 4270373.0	95.32489 (88011024) 112.69509c(89010424)	97.39082c(89091824) 107.90118c(89122124)	108.79318 (88101024) 121.49931c(88072924)	119.32846 (88101024) 132.88553c(89090224)	131.02596 (86032124) 146.89986c(86080924)
4270373.0	126.25593 (88090624)	125.01107c(89122124)	132.25883 (88110224)	145.33841 (87042824)	168.52785c(86080924)
4270353.0	155.11125c(89010424)	145.46370c(89122124)	150.84004 (88110224)	171.63617c(89091824)	190.53314c(87042724)
4270353.0	178.67175c(89010424)	169.28210c(89122124)	174.46471c(89122124)	195.75804c(88072924)	213.15884c(87042724)
4270333.0	209.99150 (89092524)	229.01015c(89010424)	211.12357c(89010424)	239.00273c(85032024)	256.69638c(87110524)
4270323.0	244.34239 (87120524)	274.98572c(89010424)	257.45984c(89122124)	268.96350 (88101024)	317.33011 (87042824)
4270313.0	301.28662c(87010524)	329.76175 (89092524)	335.85034 (88090624)	320.77005 (85072024)	404.04135 (88101024)
4270303.0	362.13809c(85120524)	397.72379 (87120524)	474.94373c(89010424)	437.36948c(89010424)	486.70447 (86092524)
4270293.0	387.62320c(86122524)	484.32138c(85121224)	589.01788 (87120524)	582.78827c(87122824)	681.19110 (87042824)
4270283.0	445.27307c(85011624)	580.88165c(86012324)	769.04053 (87120524)	917.41785c(89123024)	927.30762 (88101024)
4270273.0	567.38196c(87112924)	704.64972c(87112924)	977.37201c(86012324)	1318.52722 (88112224)	1372.89880 (88011024)
4270263.0	520.87854c(87102024)	864.78717 (85102224)	1366.94702c(87112924)	1988.88171 (88112224)	2484.15039c(89123024)
4270253.0	399.85712c(87012524)	705.46997c(87112024)	1296.35388c(87012524)	2608.35620 (85102224)	0.00000 (0000000)
4270243.0	449.33148c(86012124)	642.46844c(85120424)	1045.79492c(85120424)	1714.25732c(85120424)	0.00000 (0000000)
4270233.0	331.77136c(85020324)	498.54160c(85020324)	609.78351c(89122524)	1015.96136c(85031024)	0.00000 (0000000)
4270223.0	232.13910c(85020324)	292.99036c(85091924)	522.03113c(89022124)	732.61951c(86010324)	1325.77271c(87122724)
4270213.0	205.85443c(85031024)	302.41135c(88022924)	325.87579c(88042524)	499.02756c(88042524)	845.64130c(87122724)
4270203.0	189.68959c(88042624)	196.30197c(89022124)	268.52582c(89122024)	411.58337c(87112624)	535.86731c(88010324)
4270193.0	131.15926c(89022124)	166.62309c(89122024)	224.52051c(89122024)	266.93750c(87112624)	396.02448c(86110224)
4270183.0	125.67609c(86010324)	143.87373c(87050724)	193.38234c(87112624)	230.60083c(85022624)	290.98175c(85122924)
4270173.0	101.36927c(85013124)	124.12172c(89122024)	147.64955c(87112624)	190.84853c(85022624)	231.36394c(85011824)
4270163.0	90.32139c(88010424)	109.57925c(88010424)	132.03873c(87122724)	161.12177c(85022624)	180.26283c(89012024)
4270153.0	83.33564c(87050724)	97.11985c(87122724)	113.02560c(87122724)	133.45662c(86011224)	148.67303c(89012024)
4270143.0	74.82070c(87122724)	85.27171c(86011224)	97.42623c(87122724)	112.96750c(85022624)	124.08034c(89012024)
4270133.0 4270123.0	66.19957c(87122724) 61.00004c(87122724)	74.58928c(87122724)	84.69022c(85022624)	95.25138c(85022624)	110.30551c(87111824)
4270123.0	56.28651c(86011224)	69.43468c(87122724) 63.66099c(87122724)	78.86591c(85022624) 68.61997c(87122724)	87.02375c(86110224) 82.33255c(85021124)	102.91879c(87111824) 97.33311c(87111824)
-2/0113.0	50.20051C(00011224)	03.000990(0/122/24)	00.0199/0(0/122/24)	02.332550(05021124)	91.333110(0/111824)

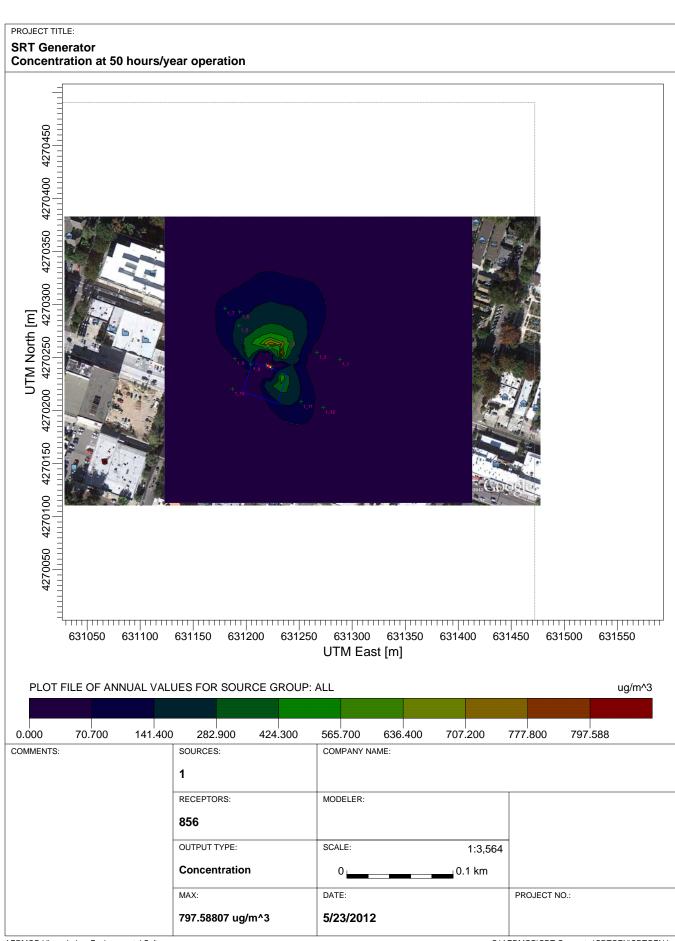
	*	** C:\AERMOD\SRT Genera **	tor\SRTGEN\SRTGEN.isc		*** 05/23/12 *** 09:29:23
**MODELOPTs CONC	: URBAN ELEV	DFAULT		MULTYR	PAGE 28
	*** THE INC		ERAGE CONCENTRATION VAL STCK1 ,	UES FOR SOURCE GROUP: A	LL ***
	**	* NETWORK ID: UCART1	; NETWORK TYPE: GRIDCART	* * * *	
		** CONC OF PM-10	IN MICROGRAMS/M**3	**	
Y-COORD			X-COORD (METERS)		
(METERS)	631223.12	631233.12	631243.13	631253.13	631263.13
4270383.0	135.41328c(88091024)	129.05247c(85031624)	115.28839c(86033124)	111.84480 (87082624)	112.68600 (85082824)
4270373.0	152.38185c(86080924)	143.64946 (85042824)		128.03651c(89091924)	129.79652 (85081724)
4270363.0	176.32076c(86080924)	160.27826c(87071424)		147.87602c(88102824)	151.91270 (88080624)
4270353.0	206.53259c(86080924)	183.42009 (85082624)	170.26048 (86090624)	174.73474 (87082624)	171.64447 (88080624)
4270343.0	241.86176 (85082624)	212.65865c(87092324)	202.82800 (87082624)	207.53288 (87100924)	192.49542c(89041024)
4270333.0	292.70175 (85082624)	255.65820 (85042824)	246.57565c(89091924)	253.56526 (88080624)	205.72014c(89041024)
4270323.0	362.07529 (85042824)	313.25821 (86030624)	307.26968 (85082824)	298.56488c(89041024)	228.62798 (85081524)
4270313.0	460.45297 (85042824)	401.61343 (86090624)		337.07074c(89041024)	293.76883 (85090724)
4270303.0	604.78668 (89080824)	511.86145 (89080824)	505.11368 (85081724)	385.29211 (88100724)	375.25027 (85090724)
4270293.0	804.43671 (89080824)	674.31635 (85052724)		522.65887c(87030724)	426.19116c(87100624)
4270283.0	1167.01807 (85042824)	1012.27008 (86060524)	757.04150 (88100724)	674.15564c(87100624)	489.93228 (87061524)
4270273.0	1777.60474c(85031624)	1586.31384c(89041024)	1200.44043c(89022324)	781.93939 (87061524)	613.74707c(86092124)
4270263.0	2975.49707c(87071424)	2212.58032 (88100724)		908.14142 (88050824)	463.54758c(86092124)
4270253.0	0.00000 (0000000)	3212.23511 (86033024)		554.00043 (87031824)	342.83786 (86040524)
4270243.0	0.00000 (0000000)	0.00000 (0000000)		783.38617c(85031224)	467.99219c(85031224)
4270233.0	0.00000 (0000000) 2691.99536c(85111624)	3379.20288c(86120624) 2800.52930c(88032524)		722.48950 (89030324)	458.89258 (89030324)
4270223.0 4270213.0	1454.72253c(85111624)	1655.82812c(85112524)		1052.91895c(89022624) 882.93964 (88031024)	608.92322c(88030924) 596.02777c(89022624)
4270213.0	889.95660c(88010424)	1057.36694c(85111624)		808.19690c(85013024)	547.63177 (88031024)
4270193.0	619.59082 (85112324)	712.75342c(85022724)		617.63361 (87032724)	518.85852c(89021024)
4270183.0	438.28564 (85112324)	495.78214c(88122824)		468.41299c(86020824)	431.68237 (87111424)
4270173.0	317.79428 (85112324)	342.95105c(88122824)		335.08176c(86102524)	344.60315c(87121724)
4270163.0	246.40245 (85112324)	266.61014 (85112424)	319.83972c(86100324)	291.62491c(88122824)	274.38284c(86020824)
4270153.0	196.97755 (85112324)	217.95575 (85112424)		250.46162c(88122824)	216.35458c(86020824)
4270143.0	164.26424 (85112324)	181.20412 (85112424)		209.00774c(88122824)	183.40074c(85111624)
4270133.0	140.21205 (85112324)	152.85191 (85112424)	156.89862c(86100324)	179.50151c(85122924)	164.70804c(88122824)
4270123.0	124.01266 (85112324)	126.86362c(88010424)		153.78381c(86100324)	145.05692c(88122824)
4270113.0	109.19082 (85112324)	110.08695c(88010424)	108.52262c(86102524)	130.42754c(86100324)	126.01614c(88122824)

	* *	* C:\AERMOD\SRT Generat *	or\SRTGEN\SRTGEN.isc		*** 05/23/12 *** 09:29:23
**MODELOPTs: CONC	URBAN ELEV	DFAULT		MULTYR	PAGE 29
	*** THE INCL	4TH HIGHEST 24-HR AVE UDING SOURCE(S): S	RAGE CONCENTRATION VALU TCK1 ,	JES FOR SOURCE GROUP: 2	ALL ***
	***	NETWORK ID: UCART1 ;	NETWORK TYPE: GRIDCART	* * *	
		** CONC OF PM-10 I	N MICROGRAMS/M**3	**	
Y-COORD			X-COORD (METERS)		
(METERS)	631273.12	631283.12	631293.12	631303.12	631313.13
4270383.0	115.60903 (85081724)	100.47342 (85081524)	89.90688c(86101224)	87.03613c(87030724)	84.95308c(89022324)
4270373.0	124.77272c(87080424)	103.29771c(88090724)	100.89169 (88100724)	92.43570c(87082724)	98.84346c(89022324)
4270363.0	133.65248 (85081724)	113.07635c(88090724)	112.39267c(87030724)	109.26772c(89022324)	100.86710c(87100624)
4270353.0	138.77905 (85092924)	136.88698c(86101224)	124.30602 (85090724)	122.22485c(87081624)	105.23891c(87030724)
4270343.0	153.57527 (85081524)	152.56412c(87030724)	149.99533c(87030724)	129.06097c(85100724)	114.54401c(85032524)
4270333.0	193.33733c(86101224)	180.10921c(89022324)	162.57869c(87100624)	136.20078c(85072124)	124.23903c(88042724)
4270323.0	227.82707 (85090724)	210.12984c(87100624)	171.35780c(89022324)	152.85538c(88042724)	133.90703 (86033024)
4270313.0	276.61029c(87100624)	228.18997c(89022324)	192.97655c(88042724)	171.54402c(85072124)	147.31868c(86092124)
4270303.0	301.71402 (87061524)	251.73053c(88042724)	219.89723c(86042824)	187.37784c(85100724)	141.92244 (88050824)
4270293.0	337.43839 (87061524)	292.18124 (89060424)	226.04608c(85100724)	166.35866c(88060824)	134.81502c(89091424)
4270283.0	382.55896c(86092124)	291.49844 (88050824)	199.03915c(89030924)	142.38930c(89091424)	104.27854c(88091924)
4270273.0	369.37589c(88060824)	235.43001c(86092124)	158.38902c(88091924)	115.56815 (87031824)	87.09701 (87031824)
4270263.0	271.93921c(89050224)	179.59900 (87031824)	127.55893c(85031724)	107.12675 (86070424)	92.91628c(86042624)
4270253.0 4270243.0	256.78998c(88120924) 331.31223c(88020924)	189.24297c(85061024) 243.29849c(88020924)	150.14917c(86091924) 187.37297c(88020924)	122.44064c(85032424) 149.58044c(88020924)	105.12293c(86091924) 123.39044c(88020924)
4270243.0	273.93689c(86122124)	197.89609c(85120824)	157.77423c(85120824)	126.55610c(85120824)	108.44810 (89012324)
4270223.0	408.49890c(88030924)	270.52341c(88030924)	178.65224c(88030924)	135.75452c(88120524)	112.35505c(86012024)
4270213.0	461.69635c(85111124)	313.95065c(88122624)	228.86363c(86012024)	181.14697c(88030924)	137.54318c(88030924)
4270203.0	374.84753 (86101824)	324.58752c(89022624)	251.59184c(85111124)	197.22458c(88122624)	153.60477c(88030924)
4270193.0	377.00333 (85032924)	270.13956 (86101824)	241.89404c(88122624)	198.03487c(89093024)	158.13319c(88011124)
4270183.0	350.76187 (87111424)	276.50153 (85032924)	213.38020c(87121724)	166.36388 (86101824)	154.70245c(89022624)
4270173.0	310.17212c(88111824)	260.14557 (85101324)	207.00777 (85032924)	165.84709 (88031024)	134.37947 (86101824)
4270163.0	253.75166 (87032724)	229.91051c(85013024)	200.68346 (85101324)	164.20396 (85032924)	131.85315c(86120624)
4270153.0	217.44655 (87032724)	200.97394c(88020224)	181.66779c(88032524)	159.59613 (85101324)	135.58278 (85032924)
4270143.0	181.73866 (87032824)	177.52220 (85120924)	164.83904 (87032824)	150.48711 (87111424)	133.75143c(89021024)
4270133.0	153.37598c(86020824)	151.67285c(86020824)	144.25369c(88032524)	136.42735 (87111424)	122.96460c(85013024)
4270123.0	128.55760c(89020624)	129.19798 (87032824)	126.00727c(87121724)	126.24191 (87032824)	116.42344c(85013024)
4270113.0	117.09429c(85111624)	113.26789c(89020624)	115.51273 (87032824)	111.24917c(88032524)	110.64696c(87020324)

MODELOPTS: CONC URBAN ELEV DFAULT DFAULT MULTYR * THE 4TH HIGHEST 24-HR AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: ALL *** INCLUDING SOURCE(S): STCK1 , *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART *** ** CONC OF PM-10 IN MICROGRAMS/M**3 **		**	** C:\AERMOD\SRT Genera	ator\SRTGEN\SRTGEN.isc		*** 05/23/12 *** 09:29:23
INCLUDING SOURCE(S): STCK1 , *** NETWORK ID: UCART1 ; NETWORK TYPE: GRIDCART ***			DFAULT		MULTYR	PAGE 30
					JES FOR SOURCE GROUP: AI	LL ***
** CONC OF PM-10 IN MICROGRAMS/M**3 **		***	NETWORK ID: UCART1	; NETWORK TYPE: GRIDCART	* * *	
			** CONC OF PM-10	IN MICROGRAMS/M**3	* *	
Y-COORD X-COORD (METERS)	Y-COORD			X-COORD (METERS)		
Y-COORD (METERS) (METERS) 631323.13 631333.13 631343.12 631353.12 631363.12		631323.13	631333.13		631353.12	631363.12
4270383.0 88.57506c(87030724) 77.07796 (89060424) 75.97355c(85100724) 66.49804 (87061324) 65.69242c(85080224)	4270202 0 1	88 E7E06a(87020724)	77 07706 (80060404)	75 07255~(95100724)	66 40004 (07061224)	GE 60242a/8E080224)
4270353.0 $65.55000(67050124)$ $71.57750(65000244)$ $73.57550(65100724)$ $65.45004(67061524)$ $65.05242(6500224)4270373.0$ $87.64600(85060424)$ $84.91627c(85100724)$ $74.52919c(85032524)$ $70.36588c(85080224)$ $63.43803c(85072124)$						
4270363.0 91.63643c(85080224) 85.09140c(85032524) 80.34171c(85072124) 72.64378c(85072124) 66.83173 (89060424)						
4270353.0 98.08616 (87061524) 91.83418 (87061324) 84.02976c(85072124) 74.85941 (89060424) 70.41968 (86033024)						
4270343.0 103.10676c(88042724) 96.54153 (87061324) 85.01337 (89060424) 82.30917 (86033024) 74.73158 (86033024)						
4270333.0 107.36219 (86033024) 95.77570 (89060424) 93.60862c(86092124) 84.90044c(86042824) 74.66373 (86033024)	4270333.0	107.36219 (86033024)	95.77570 (89060424)) 93.60862c(86092124)	84.90044c(86042824)	74.66373 (86033024)
4270323.0 113.81293c(86092124) 102.96207c(88022324) 90.57278c(88050224) 82.32294c(86092124) 69.56824c(88022324)	4270323.0	113.81293c(86092124)	102.96207c(88022324)) 90.57278c(88050224)	82.32294c(86092124)	69.56824c(88022324)
4270313.0 117.04724c(85100724) 102.10917 (88050824) 88.30895 (88050824) 71.77537c(88050224) 58.45284c(85031224)	4270313.0	117.04724c(85100724)	102.10917 (88050824)	88.30895 (88050824)	71.77537c(88050224)	58.45284c(85031224)
4270303.0 115.75680c(88050224) 94.15041c(86092124) 70.96220c(85031224) 62.30412c(86091924) 50.69625c(88100424)	4270303.0	115.75680c(88050224)	94.15041c(86092124)) 70.96220c(85031224)	62.30412c(86091924)	50.69625c(88100424)
4270293.0 98.47556c(89030924) 75.55260c(87021024) 61.41960c(87021024) 52.63752c(85061024) 47.76255c(89111324)	4270293.0	98.47556c(89030924)			52.63752c(85061024)	47.76255c(89111324)
4270283.0 79.59647c(88100424) 66.29014 (89051024) 55.22529c(85031224) 51.12479c(85031224) 48.47216c(85031224)						
4270273.0 69.98580 (86070424) 60.84833c(86091924) 57.94985c(88020224) 56.28824c(86092724) 50.79153c(85061024)						
4270263.0 78.97782c(86042624) 66.68113c(86042624) 61.47563c(88020224) 60.15929c(88020224) 57.60269c(88020224)						
4270253.0 89.48795c(86050624) 83.84622c(86050624) 77.82896c(88020924) 72.03102c(88030224) 66.97678c(85031224)						
4270243.0 106.07868c(88020924) 93.04494c(88020924) 83.63228c(88020924) 77.94281c(88020924) 70.40347c(85121324) 70.40347c(85121324)						
4270233.0 93.74807 (89012324) 81.54432 (89012324) 72.61089c(86050624) 66.14381c(86050624) 60.5722c(86050624) 60.572c(86050624) 60.572c(860506200000000) 60.572c(860506000000000000000000000000000000000						
4270223.0 87.45900c(86122124) 72.16134c(86122124) 60.74348c(88031624) 55.11324c(89052824) 51.14102c(89052824) 51.14102c(8905824) 51.14102c(8905826) 51.14102c(8905826) 51.14102c(890586) 51.14102c(
4270213.0 104.32046 (89030324) 79.11995c(88030924) 64.44711c(88030124) 61.30974c(88031624) 55.83107c(88120524) 4270203.0 125.73904c(88030924) 102.62842c(88030924) 84.17331c(88030924) 69.13557 (89030324) 56.77241c(86112224)						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
4270153.0 $135.662316(6311124)$ $115.45076(6001224)$ $95.05305(60122024)$ $65.64750(6002024)$ $74.453540(6003024)4270173.0$ $125.88232c(8921024)$ $107.64338c(89022624)$ $99.12401c(86112224)$ $95.11298c(88122624)$ $77.05521c(88122624)$						
$\frac{1}{4270175.0} = \frac{1}{125.002226(59021024)} = \frac{1}{10.0045300(69022024)} = \frac{1}{95.124010(60112224)} = \frac{1}{55.112500(69122024)} = \frac{1}{75.0022024} = \frac{1}{75.002204} = \frac{1}{75.002204} = \frac{1}{75.002204} = \frac{1}{75.002204} = \frac{1}{75.002204} = \frac{1}{75.002204} =$						
4270153.0 112.19937 (88031024) 95.28020c(86122024) 81.30804 (86101824) 75.72446c(89021024) 73.63111c(85111224)						
4270143.0 114.63565 (85032924) 94.55964 (85032924) 82.57295c(85111124) 69.99559 (86101824) 67.75784c(89021024)						
4270133.0 110.65669c(89021024) 98.48468 (85032924) 83.80018 (85032924) 71.08656c(8511124) 63.73092c(86120624)						
4270123.0 105.92038c(85013024) 98.22115c(88021524) 85.78001c(89021024) 74.64520 (85032924) 61.82490 (85032924)						
4270113.0 102.50803c(85013024) 97.41115c(88021524) 90.68420c(88021524) 78.41388c(88021524) 66.96542c(89021024)						

*** ISCST3	- VERSION 02035 *** **	* C:\AERMOD\SRT Generat *	or\SRTGEN\SRTGEN.isc		*** 05/23/12 *** 09:29:23
**MODELOPTs CONC	: URBAN ELEV	DFAULT		MULTYR	PAGE 31
			STCK1 ,	JES FOR SOURCE GROUP: A	LL ***
	***		<pre>NETWORK TYPE: GRIDCART IN MICROGRAMS/M**3</pre>	* * *	
Y-COORD (METERS)	631373.12	631383.13	X-COORD (METERS) 631393.13	631403.13	631413.12
4270383.0	55.89577c(85072124)	51.44461c(86042824)	53.00793c(86042824)	46.39378 (86033024)	45.29876c(85100724)
4270373.0	58.60647c(86042824)	56.25867 (87061324)	51.63764 (86033024)	49.87880c(86092124)	46.64442c(86092124)
4270363.0	61.28685 (86033024)	58.35135c(86092124)	55.71555c(86092124)	51.00309c(86092124)	49.42335c(85031224)
4270353.0 4270343.0	65.32094 (86033024) 66.48697 (86033024)	60.38413c(86042824) 62.20144c(85031224)	56.36568c(89091424) 56.33764c(85031224)	53.12986c(85031224) 51.84361c(88022324)	49.25892c(86110824) 42.75265c(88022324)
4270343.0	66.85520c(85031224)	60.11392c(86110824)	49.31979c(85031224)	41.84841c(85031224)	42.75265C(88022324) 37.72025c(88050224)
4270323.0	59.23713 (86033024)	49.32663 (86033024)	42.19818c(88100424)	39.10404c(88100424)	35.42707c(88100424)
4270313.0	51.61886 (86033024)	44.26297c(88100424)	39.63261c(88100424)	37.33047c(85061024)	37.66200c(86110824)
4270303.0	44.51931 (89051024)	44.07899c(85061024)	38.70189c(86110824)	38.57500c(86101324)	37.11520c(86091924)
4270293.0	44.52998 (89051024)	42.30075c(89111324)	40.64198c(87102324)	39.20565c(86101324)	37.20134c(87102324)
4270283.0	46.49894c(85031224)	45.20888c(85031224)	43.72382c(85061024)	40.51419c(88020924)	39.61257c(88030224)
4270273.0	49.58901c(88030224)	49.30989c(86092724)	46.63850c(86092724)	45.13423c(88020924)	43.90776c(88020924)
4270263.0	54.35805c(88020224)	50.80794c(88020224)	47.30552c(86050624)	45.82319c(86050624)	44.31531c(86050624)
4270253.0	63.15194c(85121324)	59.98458c(85121324)	56.83522c(85121324)	53.76646c(85121324)	50.81850c(85121324)
4270243.0	65.71194c(85121324)	61.64339c(85121324)	57.82056c(85121324)	54.24958c(85121324)	50.92846c(85121324)
4270233.0	56.23891c(86050624)	52.85069c(86050624)	49.68847c(86050624)	46.54868c(89052824)	44.21198 (89012324)
4270223.0	47.65656c(89052824)	44.78377c(89052824)	42.75565c(88031624)	39.59624c(88031624)	37.79802 (89012324)
4270213.0	51.67972 (89030324)	46.48980c(88030124)	42.48922c(88030124)	38.72654c(88030124)	35.25615c(88030124)
4270203.0	54.61967c(88031624)	52.55469 (89030324)	46.36662c(88030124)	42.41954 (89030324)	38.11306 (89030324)
4270193.0	59.22086c(88030924)	50.69939c(88030924)	46.75173c(88031624)	44.52385 (89030324)	41.29145 (89030324)
4270183.0	65.48935c(89093024)	54.97205c(85121924)	51.34371c(88030924)	45.08580c(88030924)	39.47426c(88030924)
4270173.0	67.94863c(88030924)	61.48229c(88030924)	55.51233c(89093024)	47.81487c(89093024)	41.87190c(85121924)
4270163.0	75.24194c(88122624) 71.56777c(88011124)	62.87561c(88122624)	56.51845c(88030924)	52.91909c(89121424)	48.97871c(86012024)
4270153.0 4270143.0	65.46280c(85111124)	66.40415c(86111724) 64.27118c(86111724)	61.28845c(88122624) 60.52157c(88011824)	53.03459c(88122624) 56.27386c(89093024)	51.81754c(89121424) 52.31224c(88122624)
4270143.0	57.20311c(88122624)	57.57430c(88011824)	57.96884c(86111724)	56.16108c(89093024)	52.97873c(88122624)
4270133.0	58.54354c(86120624)	49.32516 (86101824)	50.88481c(89022624)	51.58155c(88011824)	51.15276c(88011824)
4270123.0	56.86176 (85032924)	52.99514c(85111124)	46.08091c(86120624)	44.21951c(88122624)	45.63528c(89022624)
-		. ,			

*** ISCST3 - VERSION 02 **MODELOPTs: CONC	* * *	LERMOD\SRT Generator\ DFAULT	\SRTGEN\SRTGEN.isc	MULTYR	***	03/23/12
		HIGHEST 24-HR AVERAC SOURCE(S): STCP		VALUES FOR SOURCE	GROUP: ALL	***
		*** DISCRETE CARTES	SIAN RECEPTOR POINTS	***		
	** (CONC OF PM-10 IN M	MICROGRAMS/M**3		* *	
X-COORD (M) Y-COOR	D (M) CONC	(YYMMDDHH)	X-COORD (M)	Y-COORD (M)	CONC	(YYMMDDHH)
631288.50 42702 631237.00 42702 631193.13 42702 631180.06 42702 631189.50 42702 631251.75 42702	67.00 1781.1773 80.50 796.5396 96.50 431.4381 49.50 884.3187	59c (86091924) 57c (87030724) 57c (85121224) 57c (88011524) 59c (87012524) 66c (85013024)	631266.75 631228.88 631194.00 631204.44 631187.19 631272.63	4270255.00 4270269.00 4270293.00 4270243.50 4270220.50 4270203.00		(86040524) (86060524) (87120524) (87121524) (89022124) (86101824)
631219.25 42702 631223.62 42702	43.50 0.0000	(0000000)	631219.44 631223.94	4270241.50	0.00000	(00000000) (00000000)

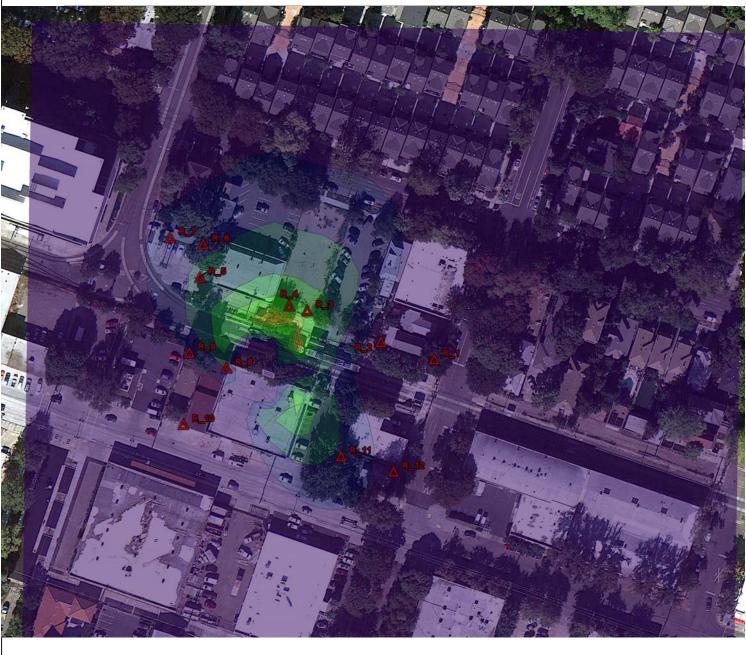

*** IS	SCST3 - VERSION 02035 ***	*** C:\AERMOD\SRT Generato	r\SRTGEN\SRTGEN.isc		* * *	05/23/12 09:29:23
* * MODET	OPTs:					PAGE 33
CONC	URBAN ELE	EV DFAULT	MUL	TYR		11102 55
		*** THE SUMMARY OF	MAXIMUM ANNUAL (5 YRS)	RESULTS ***		
		** CONC OF PM-10 IN	MICROGRAMS/M**3		* *	
					NETWORK	
GROUP 1	ID AVE	ERAGE CONC REC	EPTOR (XR, YR, ZELEV, ZFLA	G) OF TYPE	GRID-ID	
						-
ALL	1ST HIGHEST VALUE IS	797.58807 AT (631233.12,	4270253.00, 4.88,	0.00) GC	UCART1	
	2ND HIGHEST VALUE IS	765.54608 AT (631223.12,	4270263.00, 4.88,	0.00) GC	UCART1	
	3RD HIGHEST VALUE IS	650.21008 AT (631233.12,	4270263.00, 4.88,	0.00) GC	UCART1	
	4TH HIGHEST VALUE IS	569.14862 AT (631213.12,	4270263.00, 4.88,	0.00) GC	UCART1	
	5TH HIGHEST VALUE IS	509.20905 AT (631233.12,	4270233.00, 4.88,	0.00) GC	UCART1	
	6TH HIGHEST VALUE IS	494.65887 AT (631228.88,	4270269.00, 4.88,	0.00) DC	NA	
	7TH HIGHEST VALUE IS	472.59772 AT (631237.00,	4270267.00, 4.88,	0.00) DC	NA	
	8TH HIGHEST VALUE IS	432.00104 AT (631223.12,	4270273.00, 4.88,	0.00) GC	UCART1	
	9TH HIGHEST VALUE IS	399.06418 AT (631233.12,	4270223.00, 4.88,	0.00) GC	UCART1	
	10TH HIGHEST VALUE IS	391.42505 AT (631233.12,	4270273.00, 4.88,	0.00) GC	UCART1	

*** RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR BD = BOUNDARY

*** ISC	CST3 - VERSION 02035 *** *	* * *	05/23/12 09:29:23			
**MODELC CONC	DPTs: URBAN ELEV	DFAULT		MULTYR		PAGE 34
		** CONC OF PM-10	IN MICROGRAMS/M**3		* *	
GROUP ID) AVE	DATE RAGE CONC (YYMMDDH	IH) RECEI	PTOR (XR, YR, ZELEV	7, ZFLAG) OF TYPE	NETWORK GRID-ID
ALL		4380.90674c ON 8510072 3379.20288c ON 8612062		-	88, 0.00) GC 88, 0.00) GC	UCART1 UCART1
*** REC	CEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR BD = BOUNDARY					

*** ISCST3 - VER	RSION 02035 *** *** (EN.isc	* * *	05/23/12 09:29:23		
MODELOPTs:	^ ^ ^				*	09:29:23 PAGE 35
CONC	URBAN ELEV	DFAULT		MULTYR		11102 55
*** Message Summa	ary : ISCST3 Model Execu	ution ***				
Summar	ry of Total Messages					
A Total of	0 Fatal Error Mess	sage(s)				
A Total of	3 Warning Message	(s)				
A Total of	8888 Informational Me	essage(s)				
A Total of	8888 Calm Hours Ident	tified				
***** FATAL	SERROR MESSAGES *****	* *				
* * *	NONE ***					
	RNING MESSAGES ******			- 1007		
	EAR :MULTYEAR Card for H K EL:RecElev < SrcBase;			1997 18#9		
	CA :Ambient Temperature		-	062111		
1122 W-100 30419 ME1	ion Ambrene Temperature	bata out-or-Range.	KONDAI- 00	002111		
*********	* * * * * * * * * * * * * * * * * * * *					
*** TCCCT3 Fir	iches Successfully ***					

*** ISCST3 Finishes Successfully ***



AERMOD View - Lakes Environmental Software

C:\AERMOD\SRT Generator\SRTGEN\SRTGEN.isc

PROJECT TITLE:

SRT Generator Concentration at 50 hours/year operation

PLOT FILE OF ANNUAL VALUES FOR SOURCE GROUP: ALL											ıg/m^3									
0.0	000	70.	700	141	.400	282	.900	424	.300	565	.700	636	.400	707	200	777	.800	797	.588	